
A low-budget stand-alone SuperBASIC example
This program was developed to suit the same use case
as the assembly language project discussed above. It
does not accomplish as much, but reads the mouse,
updates registers, and reacts to button presses.
SuperBASIC’s mouse support is confusing, or at least,
the manual is. There are two commands referenced,
‘mouse’ and ‘mdelta’. We will use the former; it is
lightweight and has handful of features.
As functional as this little program is, there is nothing
fancy going. The intent was to squeeze as much
functionality into about 40 lines of setup and logic.
Examining the general structure, you’ll notice that
none of SuperBASIC’s graphic features are leveraged.
Instead, direct memory pokes are used to both plug the
shape data into memory, and to configure sprite
attributes. You might consider this approach a bridge
to assembly language as it will acclimate you to the
process of defining and manipulating sprites.
With an Ernesto Contreras donated sprite (the hand
from the Foenix Sprite Editor), the program fills the
screen with 16 x 16 pixel (3 color) sprites and then
enables the hardware mouse pointer. Data for the
sprites is loaded into memory at $7900 (all 64 sprites
point to the same image); and a block of code spaces
them 20 pixels apart, in 8 rows of 8.
The sample program had three design goals; a) fit on a
single screen (when listed); b) be clear enough to
understand. e.g. inserted ‘:’ chars between routines and
nesting where space allowed; c) leverage mouse
features and do so using simple coding such that it can
be easily repurposed. I hope that you will find that this
program delivers on all three objectives.

Code review in detail
Once initialized, an endless loop is entered from lines
680-910 (you’ll need to ctrl-C or ‘BREAK’ to exit*).
The SuperBASIC manual explains that the mouse
command returns 6 arguments, x, y, and z positions,
and then left, right, and center mouse button status.
Importantly, the values returned do not resemble the
registers discussed above or even MicroKernel event

data. Rather, a 320 x 240 pixel scale is used for mouse
position (but does not move the pointer). A range of
0..255 is used for the z-axis (scroll wheel); and finally,
a value of -1 is returned when buttons are depressed.
At first click, a single line of text will appear on the
first line of the screen, detailing sprite RGB color
values. Pressing the left, right, and center button (or
pressing the scroll wheel if you have one) will rapidly
advance the byte value of the respective color.
The scroll wheel shifts the array of sprites up or down;
as a row gets close to the bottom or top of the screen,
you’ll notice some unusual north/south wrapping.
This, due to low budget code on lines 810-860.
Lines 690, 710-790 convert from the x and y positions
reported by the SuperBASIC mouse command to the
VICKY mouse x and y register pairs. We need to scale
and then convert from 8-bit to 16-bit values.
Block from 500-530:
- binds the address of the bitmap to sprite # 0 .. 63

with the low byte set to 0, bits 8..15 set to $79, and
bits 16..18 (the highest byte) set to 0. This points
each sprite to the shape data located at $7900

- Within the loop, value of 65 is written to each
sprite’s attribute byte to enable (bit 0), and to select
the 16 x 16 size

- 63 is stored to the VICKY master control register
($D000), to enable graphics modes and text and the
cursor is turned off. Just like the old days, sprite
data is poked into memory from data statements

Lines 550-610 set the x and y coordinate for each of the
64 sprites, through a for/next loop. With a starting
position of 80, 80 sprites are laid out 8 on a horizontal
line, 20 pixels apart. Similar logic is used within the
scroll wheel sprite positioning code
The code block from 630-660 establishes a color
palette after selecting the character set and graphics
LUT bank of mmu_io_ctrl

In the Commodore 64 days, well before BASIC 3.5 added graphics commands to the Commodore Ted series, all “we kids” had was the
Programmer Reference Guide which contained a few sample programs (the famous “Commodore Balloon”, was one).

There were ways to add commands to the Commodore platform, but I never much liked them; also, I could not afford them.
In the context of the F256 platform, I urge you to study (and experiment) with Peter Weingartner’s expertly written reference
manual and some good old fashioned poke and peek commands. Doing so will broaden your understanding of the
platform and help to reach beyond that which even SuperBASIC can achieve. The least of these (otherwise unreachable)

features include alternate text modes (40 x 30 or 60 x 30) and redefined characters, but also, the Commodore SID synthesizer ICs, the
serial port, and real time clock. The original F256 platform is loaded with features and as a retro-computer, it really is all you need.

Upon BREAK, you’ll want to restore order by issuing a cursor on
and sprites off. If you plan on modifying this code, be sure to save
your work frequently. An incorrect mmu_io_ctrl or errant poke
can lock up your machine (just like in the good ole days)

*

13

A SuperBASIC example using the 'mouse' command and a bunch of pokes and peeks

- Three colors are set, based on spreditjr.bas’s
sprite data: color #1 (black @ 0,0,0); color #4 (grey
@ 64, 64, 64) and color #7 (white @ 255,255,255).
Color #7 will altered based on mouse button press

 Main loop (680-910) - the core of the program
- Begins by setting ‘lc’ (last c) to that of ‘c’, the scroll

wheel axis. The sprite move routine is expensive
since it iterates for 64 counts. It incorporates math
and a decision statement; by checking for a change
in z-axis from the prior loop, we can avoid lines
820-860 if no change to scroll wheel has taken place

- The mouse command returns a, b, and c for the x, y,
and z axis and a1, b1, c1 representing buttons

- Since the x and y axis are scaled to 0..319 and 0..239
respectively, we must multiply each by 2 in order to
scale to match the mouse geometry. In doing so, we
unconditionally poke potentially two-byte values
into low-byte registers. SuperBASIC does not do
any checking. Of course, this is not good software
programming, but we are on a budget. We will deal

with the high-byte of this coordinate pair in the next
code block.

- Block 710-750 compares the scaled a (x-axis)
register to 511; if greater, pokes a 2 into the high-
byte x register. If not 511, but greater than 255, a 1
is poked in, else 0. (block 770-790 is similar but for
the y-axis and must only check whether > 255)

- Block 810-860 manages the z-axis mentioned above.
A test compare against the prior value. If it has
changed, all sprites are adjusted with a new y value.
This routine is expensive so we employ the test to
avoid running it on every iteration

- Block 880-900 checks for button press and if
clicked, increases the current color value of the
RGB set by a value of 1. Calls proc upd_rgb to
print the new value to the top of the screen

Lines 2000-2070 simply contain byte values for each
of the 256 pixels of the 16 x 16 sprite

To quote Paul Robson, “here endeth the lesson” :)

500 cls :poke 1,0:for x=0 to 63:poke $D900+(x*8)+1,0:poke $D900+(x*8)+2,$79
510 poke $D900+(x*8)+3,0:poke $D900+(x*8),65:next :poke $D000,63:cursor off
520 poke $D6E0,1:poke $D6E2,70:poke $D6E4,70
530 for x=0 to 255:read y:poke $7900+x,y:next
540 :
550 x=80:y=80:for n=0 to 63
560 poke $D900+(n*8)+6,y
570 poke $D900+(n*8)+7,0
580 poke $D900+(n*8)+4,x
590 poke $D900+(n*8)+5,0
600 x=x+20:if x>230:x=80:y=y+20:endif
610 next
620 :
630 poke 1,1
640 poke $D000+4,0:poke $D000+5,0:poke $D000+6,0
650 poke $D000+16,64:poke $D000+17,64:poke $D000+18,64
660 poke $D000+28,255:poke $D000+29,255:poke
 $D000+30,255:poke 1,0
670 :
680 lc=c:mouse a,b,c,a1,b1,c1
690 a=a*2:poke $D6E2,a:b=b*2:poke $D6E4,b
700 :
710 if a>511 poke $D6E3,2
720 else if a>255 poke $D6E3,1
730 else poke $D6E3,0
740 endif
750 endif
760 :
770 if b>255 poke $D6E5,1
780 else poke $D6E5,0
790 endif
800 :
810 if lc<>c
820 x=0:y=c:for n=0 to 63
830 poke $D900+(n*8)+6,y
840 x=x+1:if x>7:x=0:y=y+20:endif
850 next
860 endif
870 :
880 if a1=-1:poke 1,1:poke $D01E,(peek($D01E)+1):upd_rgb():endif
890 if b1=-1:poke 1,1:poke $D01C,(peek($D01C)+1):upd_rgb():endif
900 if c1=-1:poke 1,1:poke $D01D,(peek($D01D)+1):upd_rgb():endif
910 goto 680
920 :
930 proc upd_rgb()
940 print " ";
950 for x=1 to 21:print chr$(2);:next
960 print "r:";peek($D01E),"g:";peek($D01D),"b:";peek($D01C);
970 for x=1 to 21:print chr$(2);:next :poke 1,0
980 endproc

2000 data 0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,7,7,1,0,0,1,1,7,7,7,1,0,0,0,0
2010 data 1,7,7,7,1,1,7,7,7,1,4,7,1,0,0,0,1,4,7,7,7,7,1,4,7,7,7,7,1,0,0,0
2020 data 0,1,4,7,7,7,7,7,7,7,1,7,7,1,0,0,0,0,1,4,7,7,7,7,1,7,7,1,7,1,0,0
2030 data 0,0,1,1,4,7,7,7,7,1,7,7,7,1,1,0,0,0,1,4,1,4,7,7,7,7,7,7,1,7,7,1
2040 data 0,0,1,4,4,4,7,7,7,7,7,7,7,7,7,1,0,0,0,1,4,4,4,7,7,7,7,7,7,4,1,0
2050 data 0,0,0,0,1,4,4,4,4,1,7,7,4,1,0,0,0,0,0,0,0,1,1,1,1,4,7,4,1,0,0,0
2060 data 0,0,0,0,0,0,0,1,4,4,4,1,0,0,0,0,0,0,0,0,0,0,0,1,4,4,1,0,0,0,0,0
2070 data 0,0,0,0,0,0,0,0,1,1,0

sprite data

(8 rows of 32
= 256 bytes)

hires mouse
pointer (aka

the 65th sprite)

rgb value display (sprite color)

Field of sprites (moves up/down)

14

Pro tip: double-clicking the
‘outer’ button will swap the

handedness of the mouse, aka
change a right hand mouse to
a lefty. This is a feature, not a
bug! When you read the full
article, this will all be clear :)

