
This issue chronicles the lessons learned and hardship suffered during my attempt to 
port a 1979-1980 Commodore PET two-player game to the Foenix F256 platform.
Many have characterized the F256K as a spiritual successor to the Commodore 64  
and the similarities are easy to spot (6502 CPU, built in BASIC, SID audio ICs, and 
familiar and easy to use Sprites, Bitmaps, and redefined characters).  Of course, the 
Commodore PET was absent many of these features and used a somewhat vanilla 
version of Microsoft BASIC.  How difficult could it be to port 195 lines of BASIC 
code to SuperBASIC and add a few features?  Hold onto your hat while I eat mine.

( DRAT!) 

"Angry Planet" - 45 years after Ouranos, Weather War lands on Foenix, with a bang

The Commodore character-based ecosystem 
1. The Full Screen Editor - Life was tough in the late 

‘70s.  The world was transitioning from serial 
connected ASCII terminals and SBCs to integrated 
computers with dedicated displays, some with graphic 
characters bound to keys on custom keyboards. 
Those familiar with the 1976 Apple ‘1’ know that a 
portion of the system board was dedicated to the 
‘terminal’ section which managed input/output.  The 
Apple was primitive, and could only type forward or 
‘rubout’ a character or full line; outside of the obvious, 
this was not much more than reimagined paper output. 
Commodore unveiled its original PET six months after 
the Apple began selling, and the PET screen editor 
empowered cursor movement in four directions, had 
upper and lower case text, the ability to clear the 
screen, insert and delete characters, enable reverse 
field text, and could move the cursor to the home 
position (the upper left of the screen).  This simple 
feature was critically important (item ‘b.’ below). 
The screen editor also established behavior standards 
that had not been considered previously.  Moving the 
cursor to a horizontal edge of the screen would wrap 
to the next or previous line.  Moving below the 25th 
line, advanced (scrolling the text upward), and moving 
beyond the top line was not permitted. 
The editor also included a mechanism to insert a 
screen line, used during editing of BASIC program 
text to allow up to 80 characters per line number. 
Finally, there was a ‘quoted’ input mode which 
allowed embedding of cursor commands into strings 
that could include printable characters, side-by-side.  
This was handy for character animation, and when 
combined with the ability to home the cursor to an x/y 
of 0/0, promoted single-screen apps; programs that 
dynamically updated portions of the display without 
scrolling or the need to redraw the entire screen. 
Commodore’s screen editor was not just good for 
editing BASIC commands (interactively or with line 

“Porting this will be easy” … 
Famous words.  I recall playing Ouranos as a kid.  It was 
one of the few two-player graphically oriented titles 
available for the Commodore PET and it was glorious.  
Distributed as part of “Cursor” volume 21, it quickly 
made its way into the hands of the first generation of 
computer kids.  Cassette tape distribution was the 
medium, and thanks to Mr. Caggiano’s “Computer Math” 
class, students in my school had at least one tape; it was a 
requirement for in-class assignments.  Home computers 
were not yet common, but that was about to change. 
Commodore’s 1977 blue-faced PET was RAM 
constrained and shipped with 4k or 8k of memory.  The 
$799 price tag included a 9” monitor, keyboard, and a 
datasette; seemingly inexpensive as compared to the 
Apple 1 ($666), but still too expensive for most homes. 
For a time, 3rd parties and OEMs provided RAM upgrade 
paths for Apples, Commodores, and TRS-80s, but they 
were expensive and not every family had the wherewithal 
to install ICs into system boards. Five short years later, 
Commodore threw down the gauntlet and released a 
maxed out 8-bit memory map with 64K of RAM and the 
ability to bank switch ROM and RAM. 
Commodore invested early and reused aspects of the PET 
design across nearly every system*; a set of features so 
beloved, they found their way into the Commander X16. 
Vintage home computer manufacturers had many features 
in common, but none included as good a screen editor, a 
character set so broad, or a way to embed characters and 
cursor motion in strings, as seamlessly as Commodore. 
In this article, we take an early PET title and attempt to 
port it to SuperBASIC on the Foenix F256 platform.  We 
begin by acknowledging the three aspects of 
Commodore’s character-based BASIC environment 
greatness, and then lay out seven considerations (show 
stoppers and work-arounds); some obvious, some 
surprising, but all were necessary to get a version of 
Ouranos to run on the Foenix F256. 

November 
2024 

Issue F18 
(rev b.)

1
PET 2001 and 40xx, CBM 80xx, VIC-20, CBM-II, C64, SuperPET, 
C16, Plus/4, C128, B128, C65 (not released), and more…

*

https://en.wikipedia.org/wiki/CURSOR


2

numbers), it was also good for immediate mode 
math, debugging (print the current value of a variable 
or to perform a test) or marking/prototyping text 
layout.  And thanks to the CHROUT kernal routine, all 
of these controls and features could be leveraged 
from assembly language as easily as from BASIC. 
In summary, the first of these three capabilities 
surpassed efforts by Apple, ATARI, Texas 
Instruments, Timex/Sinclair, TRS-80, and scores of 
other home computer manufactures. 
Of course, kids from 8 to 80 really just wanted to 
play games, so was this really a big deal?  Not really.  
But for the programmer, it made more things possible 
with less work and because the functionality was 
common across systems and embedded between the 
Kernal and BASIC ROM, it was relatively fast. 

2. Microsoft BASIC - Simple? (yes) Powerful? (eh) 
Ubiquitous? (sort of).  BASIC was the ‘OS’ on nearly 
every system produced from 1978 to 1984 and most 
equipment manufacturers put their own spin on the 
language, adding functions and operators to either 
enhance their product to take advantage of graphics, 
sound, and text output features of their offering. 
The story behind Commodore CEO Jack Tramiel's 
licensing of BASIC from Microsoft is legendary; it 
was an early example of Jack's shrewdness and a 
close call that almost pushed Microsoft to insolvency. 
BASIC was a product of Dartmouth University’s 
math department in the mid ‘60s and provided 
students with a simple, line-number oriented 
command based language that could be used to solve 
math problems or create simple input guided 
programs.  Ultimately, output was produced and text, 
summarizing computed values was displayed, 
courtesy of the immortal PRINT command. 
BASIC’s origin story began with mathematics 
department personnel from Princeton University, but 
there is alot more to the story.  For a great watch, see 
this 38 minute clip.  It’s part of my personal ‘top 5’ 
vintage compute videos and might be in yours too! 
In the mid ‘70s, Microsoft BASIC version 1 was 
released for the then, new, Altair 8800 system.  It 
began with Dartmouth’s 25 commands and was the 
start of expansion and evolution of the language. 
OEMs added their own spin on matters such as 
ATARI and Apple adding graphics commands and 
Commodore building a tape, disk, and print I/O 
stack.  But the real innovation in the PET version led 
to the joining of their screen editor 
and tokenizing code, which adeptly 
managed whitespace (or the absence 
of it) in Commodore BASIC.  See 
item ‘d.’ below for the troubles that 
plagued my efforts.  And if you’d 
like more on how something 

seemingly simple can grow complex (and a good 
laugh), watch Robin (8-Bit Show and Tell) struggle 
with Applesoft BASIC as he 
attempts to key in a 
straightforward (on the face 
of it) BASIC program.  It's a 
tragic slog : ) 

3. Graphic character design, entry, and output -  Every 
vintage platform has strong suits and questionable 
design decisions, but one of the more peculiar early 
entrants was the TRS-80 Model 1, part of the 1977 
trinity.  It used ‘printer grade’, 5 x 8 pixel characters 
inside of a 6 x 12 pixel envelope yielding a 64 x 16 
character screen.  One one hand, it felt more 
business-like than 22, 32, or even 40 characters per 
line (c.), but on the other, 16 lines with so much 
whitespace between was bizarre, it felt double 
spaced.  The first TRS-80 also spent 64 characters on 
oddly oriented blocks; here are a few: 

The Apple II (and II+), on the other hand, had upper 
case only, 7 x 8 pixel characters with no graphic 
chars whatsoever.  They did, however, include a 
flash attribute in addition to reverse field. 
Commodore overachieved in this area.  They created 
a masterful set covering all of the bases, and dared to 
print the character set on keycaps, something that 
they had to be mindful of as keyboards evolved. 

As easily typed as 
they were, the 
glyphs also rendered 
neatly within quoted 
PRINT statements (as 
opposed to being 
coded behind opaque 
CHR$ functions).  
They were literally 
as easy to type and 
edit as standard 
alpha-numerics, and 
this meant games 

and other programs would quickly appear, starting 
with conversion from DEC and Unix systems, to be 
followed by a new generation of original titles.  For a 
look at a few 
dozen originals, 
many leveraging 
PETSCII 
graphics heavily, 
click here.  This 
site is owned by 
Kim Moser and 
links to a series 
of YouTube 
videos. 

11/2024 - F18

MEMSIZ? 8192
WANT SIN-COS-ATN? Y
3712 BYTES FREE
8080 BASIC VR 1.0
READY

Commodore PET ‘Miner!’Init of Microsoft BASIC 1.0 from a 
MITS 8800 (Intel 8080 based)

https://www.kmoser.com/commodore
https://www.youtube.com/watch?v=WYPNjSoDrqw
https://www.kmoser.com/commodore/?id=miner
https://www.youtube.com/watch?v=P17ej57-B9w


Intro to the original “Weather War” aka Ouranos 
Written by Kathy Rigby for Cursor #21, Ouranos pits 
two players against each other, leveraging a familiar 
theme: crush your competitor, or in this case, their home. 
Ouranos is 95% PET BASIC, except for a small portion 
of 6502 code which is loaded into the cassette buffer and 
called when lightning strikes, to flash the screen.  
Character graphics are used tastefully; you’ll know them 
when you see them (the lightning strike ‘weapon’ is 
particularly well done).  Audio is vintage PET, drawing 
upon the 6522 IC for a drone frequency.  Most PETs had 
a built in speaker, but the older/original variety were 
often equipped with a DIY circuit and a speaker. 
After identification of each player by name, the screen is 
rendered.  Truncated reverse field names adorn the side 
of simple Monopoly Hotel shaped houses, built from 28 
characters.  Players take turns formulating strikes on 
their opponent with each player turn starting with a new 
wind direction and speed to be accounted for. 
Weapon choices include ‘hail’, ‘rain’, ‘tornado’, and 
‘lightning’, and each inflicts differing levels of damage 
based on wind strength and ‘charge’.  After selecting a 
weapon, the attacking player chooses a charge value, 
which is limited from -150 to 150. 
After each player takes their turn in a ‘round’, the status 
line is updated and the game progresses.  This continues 
until one player destroys the other 
player's house or your mom calls 
you for dinner and you quit the 
game.  At this point, the house 
percentage remaining is 
calculated and a winner is 
declared. 
At random points between turns, 
an “act of nature” can strike, 
inflicting damage on either 
player, each labeled “TARGET”.  
The completeness of the game, 
and competitive nature (similar 
to Battleship), make it an enjoyable excursion. 

“Angry Planet” for the Foenix F256 
I started thinking about an F256 version for the October 
2024 Game Jam.  It seemed right-sized for a three day 
hackathon style effort and I planned on enhancing it 
slightly for release by the deadline.  (I am fond of this 
corner of retro and history, and I wanted to put it in the 
hands of more people). 
Ideally, I would meet this objective without opening up 
pandoras box, but it didn't work out that way.  I was 
reminded of family commitments during 2 of the 3 days 
of the jam, so had to bow out.  But I vowed to complete 
the job and having made some progress, I’m here to talk 
about it, and more importantly, talk about the challenges 
faced working on the port between BASIC versions. 

Enhancements and Foenix features leveraged 
From a gameplay perspective, the only new feature 
involves the addition of two new “acts”; one that affects 
permanent change to the house layout on the landscape, 
and a second which starts a time-based element that 
creates a ‘rising tide’, thus throwing an unexpected 
dynamic into the top-down strategy of striking your 
opponent.  But there are plenty of changes within. 
If you list the programs side-by-side, it will appear that 
the codebase has been rewritten from the ground up, and 
much of it has been.  Many of the PRINT statements had 
to be split across multiple lines, primarily because of the 
way SuperBASIC deals with control characters and 
string literals (graphic chars, specifically).  Elsewhere, 
spaces had to be inserted between arguments, values, 
and variables to prevent errors from being raised.  
Finally, logic/decision statements had to be refactored, 
and the only way to do this was to convert to modern 
IF / THEN / ELSE blocks, as we will discuss below. 
From a gameplay perspective, the flow and objective of 
the game, and the math and formulas are all true to the 
original, though var types had to be altered (e.) and 
typecast (aka, forcing a float to an integer with the INT() 
function and similar actions). 
Those with F256 Jr. platforms, soldering irons, and the 
desire to live dangerously, may wish to wire up CB2 of 

the WDC65C22, and using the PET 
schematic, relive 1977.  Otherwise, PSG 
sound is leveraged and modeled to be low 
budget, just like the original. 
Redefined characters are used to more 
closely match some of the PET graphic 
characters and to create reverse field video.  
You will also notice something unrelated to 
gameplay: a CALL to a machine language 
intro that provides window dressing for 
Angry Planet using the F256 Tile system 
and a set of converted renderings from a 
photograph of my own personal PET 4032 

machine.  This is augmented by a large compound 
sprite, styled in wireframe like the protagonist in 
Nintendo’s Punch Out arcade game.  Artwork is 
courtesy of my daughter; she is still working on it.   
As always, the last 20% is taking 80% of the time, but 
I'm shooting to distribute this by year-end.  I am 
sacrificing the year-end 32 page edition of Foenix 
Rising in order to tidy up and distribute this title, a 
working version of SIDlab, and a version of MIDI 
Retro-scope for the F256K2 (with some help).

Angry Planet, mid-development
311/2024 - F18



4

Porting notes, gotchas, and work-arounds 
(a.) Moving code to the Foenix platform - The first two 
challenges to porting, involve getting code from the 
vintage platform to a modern platform.  Some BASIC 
languages (Commodore is one) store data in tokenized 
format, with line numbers encoded in binary, memory 
pointers linked, and single byte tokens representing 
BASIC keywords. 
The F256, on the other hand, employs an ASCII text 
format when stored on disk, and optimizes once loaded 
into memory. 
Commodore’s internal format is well documented and 
there are programs to convert to text.  For small 
programs, however, I found it just as easy to scrape from 
the VICE emulator and move text to a modern editor.  I 
then used fnxmgr to push the code through USB into 
$2:8000 and SuperBASIC’s XLOAD command to push it 
down to main memory where it could be run and saved. 
For small and less complex programs, the F256 screen 
editor is just fine, but in this case, I found myself 
frustrated by looking back and forth between a version 
in the emulator, and the code in SuperBASIC so I altered 
my workflow to use “VS Code” where I could leverage 
robust editing, search and replace, split screen, and other 
tools.  

(b.) Requirement for a HOME command - To update 
screen contents in BASIC, programmers must POKE 
characters directly, or position the cursor to PRINT. 
Some languages offer an x/y coordinate based PLOT 
command, but less sophisticated efforts fall far short of 
this, providing limited control beyond the simple clear 
screen (form feed) and carriage return (and/or linefeed), 
common on previous generation TTYs. 
Applesoft BASIC had HTAB and VTAB commands in 
addition to the ability to ‘home’ and clear the screen, and 
Commodore BASIC, from inception, provided home and 
full cursor control tokens, expressed within their PRINT 
command.  Here, a <HOME> is followed by 20 
<CURSOR DOWN> characters.  This is used in Ouranos 
to positions the cursor on a lower status line: 

Unfortunately, SuperBASIC falls short in this regard.  It 
has four-direction cursor control via ctrl chars and a CLS 
BASIC command to clear the screen (also bound to ctrl-
L / form feed), but no ability to HOME the cursor. 
The F256 hardware does support an x/y system via 
registers at $D014 and $D016, however SuperBASIC 
does not consistently reference them.  It also fails to 
adapt its screen editor for 40 x 30 or other modes. 
But if you look into the cls.asm file of the 
SuperBASIC GitHub repo here, you’ll see that CLS 
indeed calls its own HOME function.  Unfortunately, the 
secondary function is not bound to a control character so 
there is no way to PRINT CHR$(x) and no documented  
address vector to reliably call. 

SuperBASIC does use the read/write VICKY registers 
for cursor positioning, but it only writes to them.  It 
maintains its own memory variables for x and y cursor 
positions (EXTColumn and EXTrow) but the bad news 
is, memory addresses are mixed within a block of 
variables that are subject to change between versions.  
And there is no way to identify the SuperBASIC version 
number, so determining SuperBASIC’s variables for this 
purpose is difficult. 
What I was able to do was to clone the assembly 
language from the latest GitHub push and write a short 
initialization routine that attempts to scrape the version 
number from the power-on screen; failing this, it 
examines memory after a built-in test to find the 
variable in memory.  The user may override the learned 
settings by uncommenting line #1 of Angry Planet and 
enter their own values.  (a table is maintained with 
several options based on my systems and others) 

(c.) Double-x / double-y text modes - While there were 
exceptions, the first generation of popular vintage 
computers predominantly featured 40 character line 
lengths and 24 or 25 screen lines.  This was driven 
primarily by the capabilities of NTSC and PAL 
televisions of the day, and the need to play well with RF 
modulators, which degraded signal quality considerably. 
Of course the first PET and some CP/M based machines 
used hard wired CRTs and were crystal clear.  However, 
screen memory was also a limiting factor and 1k - 2k 
seemed about right for a machine with only 8k-16k of 
memory.  Thus, a 40 x 25 line standard was born. 
Foenix F256 machines have registers to enable double-
x, double-y, and 70 Hz. refresh and when combined, 
provide 8 different character modes.  Turning all bits on 
(value = 7) will present a 40 x 25 screen; perfect! 
The following 4-line SuperBASIC program will give 
you a quick 1 minute tour through the 8 character modes 
before returning safely to the default 80 x 60 screen.  Be 
sure to have some text on the screen prior to running this 
so you can see the difference as the modes change: 

Notice, I said it would ‘safely’ return to the default.  The 
key message here is, the current version of SuperBASIC 
only supports 80 x 60, and while the program above 
works and looks good in mode = 7, SuperBASIC 
breaks.   Cursor movement, program listings, and 
character wrap all depend on 80 x 60, without exception. 

Pro-tip: If you find yourself flying blind; try this: 
POKE 1,0:POKE $D001,0:POKE $D000,1:CURSOR ON 

It will give you a chance to save your work !!  
11/2024 - F18

https://github.com/FoenixRetro/f256-superbasic/blob/dffaa0d75ee93ef54fb53aa1d0dd69d003a7ca30/modules/hardware/cls.asm#L65


5

To port Ouranos, I opted to center the original 40 cols. 
within 80 and used the free space for other things. 
For a deep dive discussion and a demo of  F256 
character modes, you might be interested in this video 
from my YouTube channel. 

(d.) Treatment of whitespace - The BASIC language is 
known to be a bad student in the school of structured 
programming.  It is common to cram as much code into 
as few lines as possible.  In fact, there are contests and 
videos dedicated to this dark art (see my “Five line F256 
terminal” for an example). 
To illustrate, here is a look at the original code: 

Of course, the next person that comes along has their 
work cut out for them.  NONE of this will run will run 
on a F256, as is. 
SuperBASIC demands whitespace and order, and does 
not have a sense of humor when encountering code 
formatted like this.  Here is a simple (bad) example: 
ifichar=7then30 

… here is the minimum of what is acceptable: 
if ichar=7 then goto 30 

Whatever you do, DO NOT omit the space between 
‘then’ and ‘goto’.  Doing so will raise the infamous 
"Open Structure" error which fails to identify the 
line number of the offending line, leaving you guessing. 
Of course, it would be wrong to blame SuperBASIC for 
requiring well ordered code, but if you start with tightly 
packed Commodore-style code, you’re going to be busy! 
Looking at the code above, lines 610, 660, and 710 are 
likely to be too long once whitespace is inserted.  Lines 
680, 690, 720, and 760 will need to be refactored, and 
other code which depends on this code (especially where 
variable EE must now be raised to EE#, a floating point) 
will demand other changes.  We will cover some of this 
complexity in items (e.) and (f.) below. 
SuperBASIC gets high marks for its PROC and blocked 
IF / ENDIF, but is unforgiving otherwise.  The lesson here 
is to embrace modern features and methods whenever 
possible.  If converting old code, give in early, and take 
the time to refactor.  There is no other way. 
(e.) Var data type oddities  - Despite being 50 years old, 
the ‘C’ language set the bar for modern typed languages, 
establishing a comprehensive set of types (such as int, 

float, char, double) and establishing conventions that 
would ensure portability across system architectures,  
allowing for new types as technology evolved.  And 
they have. 
But BASIC was not as ambitious, but of course, 
predated the C Language by 8 years.  BASIC prescribed 
a simple, single character type that only supported 
floating point numbers. 
Dartmouth basic allowed string literals to be printed, but 
there was no string variable supported until a subsequent 
release. 
Microsoft BASIC for 6502 supported the string ‘$’ data 
type right out of the box.  Microsoft’s view (based on 
work at Dartmouth) was, numeric vars were of type 
float unless declared as an integer (‘%’ suffix).  Of 
course, the processing required to compute values with 
mantissa and exponents is expensive, so ints have 
always been speedy by comparison.  There is a funny 
story, or folklore at a minimum, about Bill Gates 
complaining that Steve Wozniak’s Integer BASIC 
outperformed Microsoft’s version.  (this was prior to 
Apple licensing it for Applesoft,  To me any story that 
includes “Bill Gates” and “unhappy” is true, so is worth 
repeating : ) 
The key point is, SuperBASIC bucks convention, and 
does the complete opposite; it defaults to integer and 
requires a ‘#’ var suffix when a float is desired. 
So if you enter the following in immediate mode: 
pi=3.1415927 

You are bestowed with an “Out of Range” error.  This 
example was discussed on the Foenix Discord earlier 
this month. 
So be aware of this gotcha.  Ouranos code has multiple 
calcs that use decimal math, so an add of “#” to a 
handful of variables was required.  And then (of course), 
accompanying INT() functions had to be inserted 
elsewhere to avoid “Illegal argument” errors across 
references and assigns. 

(f.) Complex / compound expressions - Here’s a head 
scratcher: Item ‘(d.)’ above notwithstanding, what is 
wrong with the following expression: 
s$=spc(int(3.5+(7-len(t$))/2)) 

The answer should be “nothing”; given a name such as 
“Bartholomew”, you might expect s$ to equate to a 
single space ‘ ’. 
SuperBASIC returns (as above in example ‘d.’) an 
“Illegal argument” error.  But why? 
If we split this into two steps: 
sz=int(3.5+(7-len(t$))/2) 
s$=spc(sz) 

… we arrive at the correct result.  Chock it up to a 
parser problem/bug (or feature?).  Be aware that in 
many cases, you will find a remedy by splitting 
expressions into multiple parts. 

11/2024 - F18

https://www.youtube.com/watch?v=hvTRrvqURv0


grade":endif:endif

6

There is other general weirdness to ponder such as: 
print int(4/2) … which yields the expected: 
2 
meanwhile… 
print int (4/2) … returns something unexpected: 
02.00000 

It would seem that the whitespace between the int 
function and the expression of (4/2) provoked a padded 
‘10s place float.  Not so fast… 
What is actually happening: whitespace is causing eval 
of int as an uninitialized var (returns 0).  But why does 
print output 2.00000? 
We invoked floating point division inadvertently (versus 
Integer division?!).  Scribbled on the bottom of page 29 
of the SuperBASIC manual are the words: 
“Signed division.  An error occurs if the divisor is zero. 
Backslash is integer division, forward slash returns a 
floating point value.” 

The message is, be intentional in your use of operators 
and bound check your work in immediate mode; else, 
unexpected results will visit you in the future. 

(g.) If / then conditional form - The SuperBASIC manual 
differentiates the standard form of if / then from its 
preferred form.  It also suggests something between, 
which is downright ugly. 
‘standard’ form: 
if {conditional test} then {action} 
Well, it's standard except, if you intend on jumping to a 
line number, you need to explicitly say GOTO after THEN 
The ‘preferred’ form, which modern developers will like 
is: 
if {conditional test} 
   {action} 
endif 

This is all for the good, I suppose, but fails to explain 
why compound boolean operations within conditionals 
are not supported.  So, gone is the ability to express: 
if g > 64 and g < 74 then print "D grade" 

… and no combination of parens will resolve this. 
The ‘acceptable’ form can be single line or multi-line 
and would read as follows (as mentioned, its ‘ugly’): 
If g>64:if g<75: print "D 

So, now is a good time to embrace the structured 
programming ‘way’ of nesting conditionals.  If you 
adopt this form simply: 
10 g=66 : rem "my high school gpa" 
20 if g>64 
30 if g<75 
40 print "d" 
50 endif 
60 endif 

... SuperBASIC will reward you with a pretty print 
listing as follows (but only when listed from the 
beginning of the logical block; line 20 in this case): 

This is much better, and if you’ve developed software in 
other languages, it’s probably how you think about 
complex conditionals anyway.  And yes, ‘else’ is 
supported, but in my version of SuperBASIC, it doesn’t 
format correctly. 

In closing, here is the link to the SuperBASIC 
documentation.  MGR42 added CALL to the document in 
March of 2024, but more edits are warranted.  Also, bug 
fixes, better error messages, work on the expression 
evaluator, and some quality of life features.  If you've 
been around Foenix for a while, you'll know that some 
good programs have already been released.  Quirks 
aside, it is powerful and useful.  And please share your 
your findings on the SuperBASIC channel. 
Other tips and tricks for Microsoft BASIC converts 
- There is no immediate mode RUN x form, but you can 

GOTO x to begin execution at a given line number. 
- LIST uses a comma not a hyphen and it is acceptable to say 

“,100” to express “to line 100” or to say “100,” to 
express “list lines 100 onward”.  There is no way to slow 
down or pause a program listing and no continuous, cursor 
guided scrolling up or down.  It is also possible to LIST 
procname().  This will list a procedure in its entirety.  (the 
parens are required whether or not variables are passed). 

- There is no STEP (commonly available as an optional 
parameter in FOR loops), however you can use a WHILE / 
DO and increment the iterator as needed.  NOTE that there 
is a DOWNTO modifier, valid in FOR, but only for 
consecutive values.  WHILE is more flexible.   

- Pg. 29 of the SuperBASIC documentation cites “and” but 
should mention “/” (float division) and “\” (integer 
division); the latter is equiv. to DIV in BBC BASIC. 

- It is possible to BLOAD binary data into memory at a 
specific address, including memory above $00:FFFF 
however, you cannot load FONT data directly into the 
$C000 range.  A work around for this is to "two-step it”, 
by loading data into RAM, then copy as follows: 
bload "cbm.font",$2000 : poke 1,1 
for x = 0 to 2047:poke $c000+x,  

- The difference between PRINT and CPRINT is, the original 
will ‘action’ cursor commands (see sample * below), while 
the latter prints glyph characters for the set.  Try: 
for x = 1 to 255 : cprint chr$(x);: next 

	 ctrl-l	  12	 clear screen	 	 	 

	 ctrl-b	    2	 cursor left

	 ctrl-f	    6	 cursor right

	 ctrl-n	  14	 cursor down

	 ctrl-p	  16	 cursor up

	 ctrl-a	     1	   start of line

	 ctrl-e   5	  end of line

	 ctrl-k	    11	  kill to EOL

	 F3	 	  131	  green text

	 F4	 	  132	  lurid text

key	     val  action key	     val  action
Useful F256 CHR$ codes (use with standard PRINT only):*

11/2024 - F18

peek($2000+x):next

https://github.com/FoenixRetro/f256-superbasic/blob/main/reference/source/f256jr_basic_ref.pdf

