
What / why?

sake, based on stand-alone-keys (aka ‘sak’), is a machine language program that scans and displays HID
codes returned from MicroKernel events. sake is an ‘extended’ version of the original. (see Foenix Rising
issue #13 for more on MicroKernel in general and a deep dive discussing mouse events, specifically).
The original ‘keys’ utility was written by Gadget as a programming example demonstrating how to leverage
MicroKernel keyboard events. The original is built into every F256 and you can access it by entering DOS
from SuperBASIC (typing “/dos” and then typing “keys” at the DOS prompt).
sake is further enhanced to support mouse and joystick events and features on-screen visuals representing
meta-modifiers and hexadecimal key data. If you are designing software that you hope will run consistently
across F256 platforms, an understanding of keyboard codes is critical. This utility can help.

Loading and execution

As opposed to the original sak program, sake is not packaged with a .pgx header. Instead, it is a set of
binaries that can be loaded at prescribed addresses, then exited without disruption to your system.
BLOAD "{name}",${addr}
CALL ${addr}
The core code is < 512 bytes, however, the onscreen doc and loader code adds a kilobyte, totaling ~1,381
bytes (including the MicroKernel data struct footprint). Versions are named according to load/exec address
at $2000, $4000, and $6000; distributed in a .zip file along with this one-page doc.

Keyboard and model differences

The F256 Jr. and F256K (depending on revision and add-on hardware), support 3 different keyboards but
there are subtle differences to be aware of. This is especially important if your app uses meta and special
keys (including function keys). The following list details differences between the PS/2 keyboard (applicable
to the Jr. or when added to the F256K mouse port), the integrated F256K keyboard, and the 6522 interfaced
20-pin Commodore keyboard (enabled via DIP switch 6 and additional hardware on F256 Jr. machines):

What else to know?

• Press <RETURN> to exit (cursor is turned back on)
• Code may be re-executed after exit by CALL'ing or JSR’ing to the load address
• The $4000 and $6000 versions are compatible with SuperBASIC’s memory model
• Feedback / bugs? Please engage EMwhite on his channel on the Foenix Discord 11/2024_beta1

*the flag byte is either $00 (not-flagged) or $80 (flagged, aka negative) raised from meta-keys and
in some cases, special-keys such as the PS/2 INSERT key

beta 1 - doc rev a.

PS/2 (on a Jr. or plugged into
an F256K mouse port) F256K (integrated keyboard) vintage Commodore keyboard

plugged into a Jr’s 20-pin header

PS/2 Caps Lock vs. the F256K
LOCK vs. the CBM SHIFT LOCK

meta-key $08:$00:$80 (flagged*) does not trigger a MicroKernel
event, but acts as a Caps Lock and
illuminates the “LOCK” LED

actuates a hard SHIFT across all
keys (special symbols and numeral
keys)

RUN/STOP (not applicable / no key) standard key $BC:$03:$00 standard key $BC:$03:$00

right ALT meta-key, raises flag bit standard key $B8:$02:$00 (not applicable)

left ALT meta-key, raises flag bit same as PS/2, via “F” key same as PS/2, via CBM key

F1 .. F8 (.. F12) meta-keys $81 .. $8c :$00:$80 standard $81 .. $88 : (varied) : $00 standard $81 .. $88 : (varied) : $00

RESTORE (not applicable / no key) triggers NMI (no MicroKernel event) triggers NMI (no MicroKernel event)

r(aw):a(scii):f(lag)

Or in future, load and call from
a machine language monitor

http://apps.emwhite.org/shared-files/811/?Foenix-Rising-Issue-13-Full-December-2023.pdf&download=1

