
This MIDI focused 9-page issue is sure to please. We examine requisite details and
then present 5 pages of code and instruction to help get your legacy F256 platform off
the desktop and into the music studio. Topics include serial communication, a Dream
SAM2695 IC, use of a Vishay Optocoupler for MIDI IN, and code to tie it together.
This issue of Foenix Rising can be thought of as the ‘missing manual’ to uplift your
system with new capabilities and purpose. All you need are basic DIY/soldering skills,
$25 in parts, and the desire to achieve something you might not have thought possible.

(DRAFT!)

General MIDI for the F256K and F256 Jr. - Wavetable synthesis on a budget

WiFi card began shipping in mid-May; release of the
MIDI DREAM card is delayed, but expected soon.

Also coming soon to a F256K2 near you …
Foenix fans will be happy to learn that Stefany Allaire
will shortly release the Foenix F256K2 system and it has
a SAM2695 and optional MIDI DIN jacks onboard. This
is in addition to the YAMAHA OPL3, and a pair of SID
and PSG instances in FPGA. Pre-order boards for early
adopters are expected to be delivered in the September or
October time frame with production runs to follow.

Prepare to be impressed - Click here for
a 6-minute demo of a SAM2695. The is
the JIL SAMMER, captured in direct
stereo from an ATARI 800XL; this is the
same IC that is the subject of this article.
(yes, your F256 will sound THIS good !!)

The remainder of this article focuses on a solution for
existing F256 owners, one that you can leverage today.
As a DIY solution, this would not be possible without an
affordable and easily adaptable product from ‘M5stack’;
we’ll be dissecting their ‘SYNTH’ product.
M5stack is a Chinese company that manufactures
relatively low-cost building block packaged electronics
components for educational and prototyping purposes.
Several of them have low-speed TTL UART front-ends
and are therefore ripe for use with your F256.
The M5stack “SYNTH” product includes most of
what we need and can be procured for as little as
$12.95 USD plus tax and shipping.
Removal of a 1.5mm hex screw allows splitting of
a plastic shell, exposing the tiny DREAM IC and a
handful of components along with a tiny IC amp
which powers a low-budget one watt, 8-ohm speaker.

The Basics of MIDI communication
The MIDI protocol moves data between a ‘sending’ host
[computer or controller] and ‘listening’ [synth or drum
machine] devices at 31,250 bits per second. If you have
experience with serial communications, you might think
of this as a non-standard or unusual data rate, and it is.
It’s hard to pinpoint the history, but certainly, a 1 MHz.
clock source divided by 32 is indeed 31.25K. You won't
be able to convince your old modem (or most vintage
computers) to comply with this rate, but as luck has it, the
serial communication block of of your F256 VICKY
allows complete flexibility of clock values; it's just a
matter of working out the math and storing values into a
few registers. Otherwise, familiar serial protocol concepts
apply such as ‘data length’ (8 bits),’parity’ (none), and
‘stop bits’ (1).
This month, we have two F256 DIY projects:
#1: General MIDI circuit integration and #2: a MIDI IN
interface based on an 8-bit ATARI project*; each uses the
Feather footprint of your F256. You need not tackle both
projects, but it's far more satisfying if you do.
In a future issue, we’ll discuss and provide plans for an
‘external’ (DB9) based solution that adds MIDI OUT and
a PIC driven message filter that can be used to sync
analog synthesizer gating or clocking for an arpeggiator.

The DREAM SAM2695 IC - it’s so ‘in’ this season
DREAM is a French company (dream.fr) specializing in
synthesizer and DSP ICs and their technology has been
part of the PC gaming scene for years.
Their SAM2695 product is a QFN48 (48-pin surface
mount IC) that you may already be familiar with. It
appeared on wavetable daughter boards (as the “S2” in
the 2017/2018 time frame) and is still available for sale
today. It can also be found in the Lotharek JIL SAMMER
for 8-bit ATARI platforms, and numerous DIY solutions.
Early this year, Kevin Williams (TexElec) announced a
pair of UART based serial cards for the Commander X16;
one with an Espressif ESP32 WiFi adapter and another
featuring MIDI ports and a DREAM IC onboard. The

July / August
2024

Issue F16
* DRAFT *

1
Thank you to Michael St. Pierre for sharing his work and
fielding questions on his ATARI MIDI interface design

Of note: M5stack was acquired by Espressiv (maker of
ESP8266, ESP32) in April. One look and you’ll know why.

*

https://youtu.be/IwTfyKKxnYo
https://shop.m5stack.com
https://shop.m5stack.com/products/midi-synthesizer-unit-sam2695
http://dream.fr
https://youtu.be/IwTfyKKxnYo
https://ataribits.weebly.com/midi.html
https://www.espressif.com/en/news/Espressif_Acquires_M5Stack

2

Anatomy of the M5stack SYNTH module
The picture below details internals of the module. On a
small board, you’ll find a 4-pin connector which brings
+5, ground, and MIDI IN to the device (the 4th wire is
not used). The unit is complete with a 12 MHz. timing
crystal, a 3.3V voltage regulator, and reset circuitry.
The output of a NS4150B amplifier brings left and right
DREAM audio to a single mono signal and a short
length of 26 gauge wire connects to the SQ-2030 style
speaker, attached to the top shell of the molded plastic
case with adhesive (easily removed). This is the basis
for the first of our two projects.

TTL vs. RS-232 voltage signals
Most of the M5stack products are geared for
ESP8266/32 or RasPi projects and as a result, are
designed for TTL (transistor-to-transistor logic) signals.
This is great for an F256 ‘internal’ solution, but we will
need to make adjustments to safely use this with DIN
based MIDI devices (keyboard controllers, drum
machines, or hardware based sequencers and pads).
This can be accomplished with a simple (and single)
MOSFET transistor along with a few pull-up resistors,
with an old school Ti 232MAX IC and a handful of 1uF
capacitors, or, a simple optocoupler circuit. All of these
solutions are off-the-shelf and inexpensive and can be
procured through Amazon or electronic parts houses
such as Digikey or Mouser in North America. For the
SYNTH build part of the project, we don't need any
parts whatsoever; for the MIDI IN interface, we’ll use a
Vishay 4N28 optocoupler (see BOM on pg. 8).

There is stereo in there… somewhere
The SYNTH product was designed for educational
purposes. It provides an interface sufficient for instant-
gratification-type projects, but it does not bring the left
and right stereo channels to output. I’m not a big fan of
their choice of the NS4150B amplifier, but it will work
assuming we keep
tabs on output level.
On the schematic, we
see that left and right
audio channels are
combined to mono.
This will suffice for

amusement or development but eventually, we’ll want
instruments panned in a stereo field to ideally, use the
reverb and echo effects that the SAM2695 has to offer.
How do we go about modding the M5Stack for stereo?
The good news is, a schematic is provided. The bad
news, the bottom board traces are not exposed and
worse, for my eyesight, the scale is impossibly small.
In my video on the subject, I mention that I purchased
five of these so I could fry 3 of them in the process of
trying to split mono to stereo. I’ll share my progress.
Survivors will be gifted, so ask me if you are interested.
The pic on the left shows the
device next to a U.S. quarter and
a 1 Euro coin. This picture ->
conveys the challenge; it’s an
extreme closeup of 24 gauge wire
versus one side of the SAM2695
IC (12 contact points per side).
Ultimately, we will seek to tap into a resistor or
capacitor point. Doing so will require a study of the
SAM2695 spec sheet against the M5stack schematic. It
will also destroy any hope of the warranty (surprise!).

Software details - COMM setup and our first tone
The F256 includes a 16750 UART core in TINY VICKY
which is configured via 8 registers. Because they are
multiplexed, we need to manipulate something called
the DLAB bit for some features. But once the clock
divisor is set, we will not need to touch DLAB again.
For ref, here is the register map from the F256 manual:

Code to init the serial interface
The following procedure is necessary regardless of
Foenix model (F256K or F256 Jr.) and is identical for
internal (ESP 8266 socket) or external (DB9 serial) use.
As SuperBASIC is without OPEN and CLOSE device
management verbs, we will need to use POKE.
This following SuperBASIC code begins by setting the
MMU_IO_CTRL register to 0 in order to expose the I/O
pages to the $C000-$DFFF address range.
With this accomplished, we store values into registers
and in just 5 lines2, the UART is configured and we are
ready to send MIDI messages.

07/2024 - F16 (DRAFT)

mono
speaker

wire

power
LED

MIDI
activity LED

‘UART’ interface via
4-pin Grove cable

DREAM
SAM 2696 IC
6mm QFN48

package

24-gauge wire
(compare to

.4mm IC pitch)

See (1), (2): liner notes on pg. 9 for more on these topics

1

https://www.vishay.com/docs/83725/4n25.pdf
https://m5stack.oss-cn-shenzhen.aliyuncs.com/resource/docs/products/unit/Unit-Synth/Sch_Unit-MIDI_V1.0.pdf
https://en.wikipedia.org/wiki/16550_UART

3

poke 1,0 set mmu to i/o page
poke $D633,128 set DLAB to 1 to expose
 bps rate in $d630-$d632
poke $D630,50 bps clock divisor (low)
poke $D631,0 bps clock divisor (high)
poke $D632,0 bps prescaler divisor
poke $D633,3 no parity, 1 stop bit, 8 bit word
 clear DLAB
That’s all there is to it. The following 65C02 assembly
language code accomplishes the same task:
STZ $01
LDA #$80
STA $D633
LDA #$32
STA $D630
STZ $D631
STZ $D632
LDA #$03
STA $D633

Two subtle nuances pertaining to working with the
16550/16750 that may not appear obvious at first glance:

a. A handful of its register are dual purpose, depending
on read (R) or write (W) and some have a third
purpose when DLAB comes into the picture. For
example, $D630 is used to SEND a byte, RECV a
byte, and [in DLAB mode] prescribes the lower 8
bits of the clock divisor. Keep this in mind.

b. Outside of bps timing, address $D633 is bound to be
the most important register and an area that will keep
you guessing when things are going wrong. Here is
an explanation of how we get to a value of 3.
This value prescribes an 8 bit word with 1 stop bit
and no parity. And since we leave DLAB with a 0 bit
value, we escape the clock divisor setting mode and
ready the 16750 for writes (and potentially reads)
from $D630. Absolutely everything else we will
ever need to do to communicate with MIDI devices
is accomplished by poking bytes into $D630.
Here are excerpts from the F256 manual, laid out
bitwise (horizontally) rather than in consecutive
tables. The yellow highlights identify values used.
(bit 6 is not implemented)

Of course, the 16750 has additional registers that we do
not need. They implicate buffer and FIFO behavior and
status/error conditions. And some pertain to signals
which are not implemented in TINY VICKY and thus,
are not available to F256 platforms. If you’ve worked
with serial communications prior, some of these will
sound familiar: Data Terminal Ready (DTR), Clear to
Send (CTS), Request to Send, Carrier Detect (DCD).

The closing point is, depending on your application, you
may need to alter FIFO settings, but for simple MIDI
testing, the setup above will suffice. Once interfaced,
amazing sound is just a few lines of code away.

Hidden talents and some simple code to play a note
Before we command the SYNTH to play its first tone,
there is something else to talk about. We've discussed
that the DREAM IC is inexpensive and since it’s GM
compliant, it's powerful. You are probably also aware
that it more than doubles the voice requirements of GM
(boasting up to 64 voices of polyphony). And of course,
it also has a wonderfully derived traditional, orchestral,
synthesized, and percussive instruments.
But wait, there’s more… Did you know that the
DREAM chip includes a full featured effects engine
(enabled with MIDI NRPN commands) to affect stereo
panning, frequency filtering, chorus and reverb, just to
name a handful.
Leveraging this capability will reduce polyphony to 38,
but has use cases that are beyond the obvious. Imagine
heavily processed haunting background music or
growling wind effects growing louder and stronger as
you descend into the lower levels of Micah Bly’s Lair of
the Lich King. The addition of sonic cues will add new
dimensions to game play and developers will be relieved
from the struggles of coding for SID ICs or being stuck
with plain vanilla PSG square waves.
The DREAM IC also has a MIC input line which can be
processed through Echo, EQ, and spacial effects.
Unfortunately, the tiny SYNTH module that we are
experimenting with does not implement pin 7. But with
this said, there is still plenty to experiment with. (read
more on these features on pg. 15 of this spec sheet)

Back to our regularly scheduled programming…
The following is little less interesting, but it's a start. It's
a ‘hello world’ MIDI example. We follow this up with
something more interesting: a demo of all 128 patches
followed by a run of the GM percussion instruments
from channel 10, program 10. (programs are named
MIDINOTES.BAS and MIDIPERC.BAS and can be
downloaded here)
This buildup leads us to an a-ha moment; Unlike
traditional audio ICs which require knowledge of
synthesis plus programatic control of envelopes and
LFOs to be convincing, wavetable based GM takes care
of the difficult part for us. Pianos, trumpets, synths, and
percussion sound as they should. They are based on
sampled waveform partials, have natural sounding loop
points, instrument appropriate envelopes, vibrato where
it should be, and often, the ambiance of the original
instruments. You’d suffer an inguinal hernia injury
trying to accomplish a fraction of this on a SID IC.
I’ll be contributing a MIDI monitor with a hex string
‘send’ utility (for NRPN or traditional messages), but
my every-burning hope is for others to get involved. A
head start will be directly applicable to the F256K2.

0 1 234567
-

07/2024 - F16 (DRAFT)

https://www.dream.fr/pdf/Serie2000/SAM_Datasheets/SAM2695.pdf
http://apps.emwhite.org/foenixmarketplace/

4

How to: play a single note - 4th octave C on channel 1 | How to: send a program change (select an instrument)
Following initialization of the serial interface (above), try the following two SuperBASIC examples:

poke $D630,144 note on message poke $D630,192 program change message
poke $D630,60 note number poke $D630,{program #} instrument # 0..127
poke $D630,127 note velocity 127=max
for x=1 to 1000: next note length delay
poke $D630,128 note off command
poke $D630,60 note number
poke $D630,127 release velocity

A note about instrument selection: without a program change, this example will play using program #1 (MIDI 0), which
is a “Grand Piano”. It is important to understand that some General MIDI instruments (the Piano is one) have a ‘natural’
decay/release where a note-on command executed without an accompanying note-off, will eventually fade to zero
volume. In the above example, we pause for a 1000 count in a for/next loop. Feel free to alter this value and assess the
difference in sonic dynamics (the same applies to note velocity which may change timbre in addition to max. volume).
Instruments such as “Church Organ” on the other hand, sustain indefinitely and upon note-off, release near immediately.
Characteristics of some instruments (tuned by DREAM engineers), require longer interval between note-on and note-off.
Our first example code, MIDINOTES.BAS, runs the gamut through all 128 patches, playing notes C-D-E in sequence with
brief pauses between notes and program changes. Of course, patches with longer attack and decay cycles may not sound
quite right. These programs will benefit from a longer note length, however, this demo program was constructed simply.
Feel free to experiment, altering timing to discover more about the way specific instruments are voiced.
Using a MIDI keyboard attached to your F256 with example #4 below is the best way to experiment. You’ll need the
2nd project which adds MIDI IN (and mentioned above, a simple ‘monitor’ program will be published shortly).

Getting serious - programs* to try; ripe for modification

Example #1: MIDINOTES.BAS (plays 3 notes on each of 128 instruments, pausing between; on/off; velocity = 127)

10 rem "vars; pgm=program (patch #); nlen=note_length; plen=pause_length"
20 pgm=0:nlen=500:plen=1000

30 rem "-------------- lines 40 through 90 setup bps"
40 poke 1,0:rem " set io_ctrl to i/o page"
50 poke $D633,128:rem "set dlab to 1 to expose bps rate in $d630-$d632"
60 poke $D630,50:rem " bps clock divisor (low byte)"
70 poke $D631,0:rem " bps clock divisor (high byte)"
80 poke $D632,0:rem " prescale divisor (for bps)"
90 poke $D633,3:rem " no parity/1 stop bit/8 bit word and clear dlab”

100 rem "-------------- lines 200 through 255 play notes"
200 poke $D630,144:poke $D630,60:poke $D630,127:rem "note c4 (on)"
205 for x=1 to nlen:next
210 poke $D630,128:poke $D630,60:poke $D630,127
215 for x=1 to plen:next
220 poke $D630,144:poke $D630,62:poke $D630,127:rem "note d4 (on)"
225 for x=1 to nlen:next
230 poke $D630,128:poke $D630,62:poke $D630,127
235 for x=1 to plen:next
240 poke $D630,144:poke $D630,64:poke $D630,127:rem "note e4 (on)"
245 for x=1 to nlen:next
250 poke $D630,128:poke $D630,64:poke $D630,127
255 for x=1 to plen:next

260 rem "-------------- the following calls pgm inc and loops unless 128"
265 gosub 300:if pgm=128 then goto 400
270 goto 200
275 rem "-------------------------------------"
300 poke $D630,192:pgm=pgm+1:poke $D630,pgm
305 return
400 end * Prefer to skip the typing? Download the examples from the Foenix Content Marketplace at

http://apps.emwhite.org/foenixmarketplace. And for a quick byte-by-byte primer on the MIDI
and General MIDI command structure, check out my 8-Bit Wall of Doom YouTube series

For a primer on GM
programs (patches), by
group/family, click here

… now re-execute the note
code and hear the difference !!

07/2024 - F16 (DRAFT)

https://www.youtube.com/watch?v=BQSIqQpkCBw
http://apps.emwhite.org/foenixmarketplace
https://www.youtube.com/watch?v=BQSIqQpkCBw

Example #2: MIDIPERC.BAS (3 hits per percussive instrument #35-82 at velocity levels 40, 80, and 127; channel 10)

10 rem "vars; note=note aka instr; nlen=note length; plen=pause length"
20 note=35:nlen=500:plen=1000

30 rem "-------------- lines 40 through 90 setup bps"
40 poke 1,0:rem " set io_ctrl to i/o page"
50 poke $D633,128:rem "set dlab to 1 to expose bps rate in $d630-$d632"
60 poke $D630,50:rem " bps clock divisor (low byte)"
70 poke $D631,0:rem " bps clock divisor (high byte)"
80 poke $D632,0:rem " prescale divisor (for bps)"
90 poke $D633,3:rem " no parity/1 stop bit/8 bit word and clear dlab”

100 rem "-------------- lines 200 through 255 play notes"
110 poke $D630,192+9:poke $D630,9 : rem "set instrument to patch 10"
200 poke $D630,144+9:poke $D630,note: poke $D630,40
205 for x=1 to nlen:next
210 poke $D630,128+9:poke $D630,note: poke $D630,127
215 for x=1 to plen:next
220 poke $D630,144+9:poke $D630,note: poke $D630,80
225 for x=1 to nlen:next
230 poke $D630,128+9:poke $D630,note: poke $D630,127
235 for x=1 to plen:next
240 poke $D630,144+9:poke $D630,note: poke $D630,127
245 for x=1 to nlen:next
250 poke $D630,128+9:poke $D630,note: poke $D630,127
255 for x=1 to plen:next

260 rem "-------------- the following calls pgm inc and loops unless 82"
265 gosub 300:if note=82 then goto 400
270 goto 200

275 rem "-------------------------------------"
300 note=note+1
305 return
400 end

Example #3*: Real-time message filtering & channel 1 sequencer output mapped to GM percussion channel 10
In this program, embedded assembly language is leveraged to accomplish something that requires more horsepower.
The endless loop below performs rudimentary filtering. It reads from MIDI IN, discards real-time messages, transposes
NOTE ON messages to channel 10 (percussion), and sends the resulting byte stream to our SYNTH device. This was
written to integrate with a Roland TR-08/TR-09 drum machine, but will work with others. Check out this video.

5

100 poke $D632,231: poke $631,0
110 poke $D630,192: poke $D630,9
120 ml_routines(): call loop
130 proc ml_routines()
140 mlroutines=$7C00
150 for c=0 to 1
160 assemble mlroutines,c
170 .loop lda $D635
180 and #$01
190 beq loop
200 lda $D630
210 inc $01
220 inc $01
230 inc $C000
240 sta $C000,x
250 stz $01

260 cmp #$FE
270 beq loop
280 cmp #$F8
290 beq loop
300 cmp #$90
310 beq noteon
320 bra sendbyte
330 .noteon lda #$99
340 .sendbyte sta $D630
350 inx
360 bra loop
370 next
380 endproc

Enables 64-byte FIFO and ‘polling’ mode (not interrupt driven)
Bit 0 of $D635 = 1 when a byte is pending (see 170-190 below)

write byte to screen for visual indication of message processing

discard MIDI
clock sense
discard MIDI
clock sync
If note on msg.
(channel 1)

remap to channel
10 (percussion)

Program change to
10 (percussion)

These 5 lines
switch the I/O
bank to TEXT
then back to
registers

polling
test

Will any of this work on the
F256K2? Of course!

Simply omit lines 30-90. The only
req’d change is the MIDI out

register address (serial TX_DATA
on the F256 or $D630)

*NOTE: add lines
40-90 to example

#3 below

07/2024 - F16 (DRAFT)

https://youtu.be/MUK32ttz9LQ

Example #4: MIDI message loopback for keyboard playing (taking example #3 two steps further)
This complete program lets you ‘play’ your Foenix as if it was a MIDI synthesizer module. Most of the time, the code
simply reads a byte (from MIDI IN) and sends it to the SYNTH device as is. But it does have three features:
a) In normal mode, input from MIDI IN (received on the ‘TX’ pin of the Feather 8229 footprint) is echoed to the ‘RX’

pin of the Feather footprint (which is expected to be wired to SYNTH). Messages are displayed as above but
NOTE ON, NOTE OFF, PROGRAM CHANGE, and REAL-TIME message bytes are rendered in color. All other
messages are displayed in GREY text; this includes CHANNEL PRESSURE, PITCH BEND, MOD WHEEL, etc.

b) By default, there is no channel remapping (all incoming data is sent directly to the SYNTH). If incoming data is
polluted with real-time messages, these bytes will be displayed in RED text.

c) Three ‘gestures’ support mode toggle and program change (for channel 1 only), however, you may use your MIDI
controller to configure multiple of the 16 channels for different programs/patches to play different voices
concurrently. Here is an overview of how gestures are interpreted:
• Playing an octave 4 [C, C#, D, D#, E] ‘chord’ (awkward for a reason) will toggle between the normal pass-thru

mode and percussion mode (channel 10/program 10). Listen for a sequence of notes, played upon mode switch.
• While in normal mode, the same key sequence in octave 5 increments the program number by 1; and in octave 6,

moves to patch 1 of the next group. There is no audible indication until you play a key. Wrap around applies to
both of these functions. If your keyboard only supports one or two octaves, you will need to use the octave
control built into your keyboard in order to align the key/MIDI notes as required. The ‘online’ version of this
code will shortly be updated to display the GM program/patch name per channel and the operating mode.

607/2024 - F16 (DRAFT)

The remaining 3.5 pgs of this
article are in draft and will be

posted in the coming week

