
This issue builds on the IRQ handler (published early last year) to construct
something useful: a PS/2 keyboard state machine and a simple line editor for
the F256 Jr. (or a F256K with a keyboard plugged into the mouse port). But
first, we will study the pesky PS/2 protocol. And as usual, some nostalgia…(FLASH!)

Getting from to - a quick look at keyboard input across 3 types of machines
 Mechanical electronic typewriters -> Scanned matrix keyboards -> Serial protocol PS/2 decoding

In the days of single board microcomputers, terminals
cost as much as a computer itself and by the time the
hobbyist purchased a power supply, cassette interface and
drive, several hundred dollars had been exchanged.
② General purpose electronic keyboards were more
affordable than terminals, but they were not cheap. Apple
succeeding in charging over $1,200 for their Apple II but
Commodore, starting with the integrated PET, headed in
the other direction and on their home computer gambit
and used a low cost Mitsumi keyboard with an 8 x 8 key
matrix (electronically organized in rows and columns).
The CPU (via 6526 Complex Interface Adapter) sensed
cross-points in the matrix by scanning port addresses
through software. The layout was designed to allow
simultaneous combinations of shifted and CTRL’d keys.
The physical connection between the keyboard and the
computer was a fairly clunky 20 position .100 pitch
single-row connector, but it was reliable and low cost.
Code within the Commodore Kernal took care of the rest,
including an IRQ service routine that managed a 10-key
buffer and provided kernel routines to ‘get’ chars.
There were no status lights and no tricks or features to
speak of (just a physical shift/lock and a RESTORE key
which had a fairly direct route to the CPU's NMI line).
Today, the Foenix F256 Jr. employs a similar scheme,
however, the Jr’s MicroKernel is more complex than the
CBM kernel and is able to support PS/2 keyboards and
the 20-pin Commodore keyboard simultaneously.

③ The PS/2 protocol standard (released by IBM in 1987
along with a new PC of the same name) is the subject of
this article. FWIW, the PS/2 computer was dreadful.

If a key is pressed and nobody is listening…
Mechanical keyboard fans are still at it; many are still
buying, building, and appointing. Gamers, developers,
writers, and of course, students and professionals all use a
keyboard as the primary interface to the machine.
Tablets teased a glimpse at an alternate future, but they
were only able to get so far. Cursed are the laptop
keyboards and cherished are Cherry1 MX keyswitches.
But how did we get here?
My experience began with a Royal mechanical typewriter
that I loved dearly. I was in the 5th grade and up to the
usual; typing until 1am (after “lights out” on a school
night). In a shared room with my younger sister, I was
annoying, and my mom was not pleased. We lived in a
small apartment on divorcee lane, and it was all bad.
Mom barged into the room and catapulted the Royal to
the far wall, cracking the metal chassis. The end!
(another painful memory I'll never shake)
Three years later, my Dad loaned my Mom a company
owned ① IBM Selectric (similar to the linked video
below) so she could brush up on her typing skills before
applying for a job with the IRS. The good old days.
This video, made by keyboard aficionado Chyrosran22,
investigates the inner workings of the legendary IBM
Selectric and adeptly highlights its mechanical digital to
analog converters, levers, and whiffletrees. (If you don’t
have 16:57 for a full watch, find time to make it through
half; you’ll be rewarded handsomely with delicious
sarcasm at ~ 8:27). Thomas does not disappoint.

Apr. 2024 / F14

1

16:57
Did you know: Cherry AG originated in Illinois in 1953
supplying automotive and then arcade industries. My
sentimental favorite is the ‘volcano’ type, shown here.

1

Today, restoration junkies have access to a market full of
low-cost devices to convert to and from 20-pin Commodore
64/VIC 20 (also 128D, SX64, and test rigs) and USB.
There are also retro look-alike ITX cases like this one.

04/2024 - F14

① ② ③

https://www.youtube.com/@Chyrosran22
https://en.wikipedia.org/wiki/Whippletree_(mechanism)#/media/File:Triple_whippletree_set.svg
https://www.aceamusements.us/atari-volcano-cone-lighted-start-button.html
https://www.youtube.com/watch?v=KNa2UdagTGU
https://www.youtube.com/watch?v=BJITkKaO0qA
https://myretrocomputer.com/product/c64x-barebones/

Preposterous? Yes!; but we are aiming to demonstrate a
scenario where it will matter.
Consider filtering Duke University’s linux dictionary
(400K) to remove all of the proper nouns. The
linuxwords file contains more than 45,000 words which
are newline delimited, starting with “Aarhus” (a city in
Denmark) and ending with “Zurich”. To complete this
task, we will need to iterate through memory, managing
banking (because 400K is far greater than addressable
memory) and scan for newline characters, then check the
value of the character following the newline, along the
way, managing a set of pointers to copy back and squeeze
out capitalized words. This will be time consuming.
If a user typed ‘emergency’ on the keyboard, VICKY’s
good graces would probably capture the 16 byte FIFO but
not 16 characters. You would probably end up with
something like [fragment], ‘g’, ‘e’, ’n’, ‘c’, ‘y’ instead of
the full word. Last I checked (now), whatever that is, it is
not a word. But for your records, these are:
agency
astringency
contingency
emergency
exigency

About VICKY’s 16 byte buffer
We’ll examine the differences between scan codes,
extended scan codes, and special (Pause/Break and Print
Screen) sequences below, but the key point is, the PS/2
encoding standard produces variable length messages
depending on the key pressed and (eventually) released.
Thus, a normal keypress produces 3 bytes of output:

- 8-bit code representing the key pressed
- hex $F0 indicating a key release or ‘off’ state
- 8-bit code of the key released (same as above)

This translates to a minimum of 3 bytes per key and 16
divided by 3 equals at max, 5 unshifted keypresses hence
the “[fragment]” above. Beyond this, VICKY keeps the
train moving and runs in FIFO fashion, capturing the
newest data and dropping the oldest.
It was not mentioned above, but instead of the PS/2
interrupt, we could opt for the 1/60th of a second interrupt
(SOF) as our ancestors did; but that would be inefficient.
Most of the time, we would check pending (as needed)
and would find an empty keyboard buffer. Wasted cycles.
The approach we will take will mask all but two interrupts
(the PS/2 keyboard, and the 125 ms. RTC periodic
interval timer). Now let’s move on to the instantiation
code and discuss the logic and flow we will use to track
events.

Interrupt considerations
Before we get into the PS/2 protocol, let’s talk more about
interrupts. In the prior issue, we discussed the basics and
included table 9.2 and 9.3 from the F256 manual which
detailed bit values and address information.
We will continue the discussion by comparing the PS/2
keyboard interrupt (INT_PS2_KBD, represented by bit 2
or value 0x04) to the RTC periodic interval timer
interrupt that we used to flash the colon (‘:’) sprites in last
issue’s digital clock example.
Whatever we do, no conversation about interrupts is
complete without discussing the SOF (start-of-frame)
interrupt which is appealing since it’s: a) deterministic
from a timing perspective, occurring every screen frame
without fanfare or dependency; b) is most similar to the
prior gen of 8-bit machines and their resulting jiffy clock
scheme; and c) in a graphics context, is useful as a
dependent event to coordinate graphic objects update
which reduces tearing (a phenomena that manifests as a
glitchy visual artifact, caused when an object is being
moved as the ‘raster’ crosses paths with it).
The following table compares the three interrupt types
discussed above:

Do we really need interrupts to read the keyboard?
The short answer is “no”. An improved answer is, it
depends on your design goals and how much work needs
to be orchestrated while a user is actively typing or during
processing between user inputs.
We can avoid interrupts altogether and simply poll PS/2
KBD_IN and PS2_STAT addresses from the I/O bank
page in a tight loop. The 6.29 MHz. CPU clock is fast
enough for any human typist, even Mavis Beacon*. But
just in case, VICKY manages a 16 byte buffer without
our asking.
The real answer is we should use interrupts, and should
also maintain our own keyboard buffer of reasonable
length. In our code below, we maintain a 256 byte buffer.

2

SOF (start of
frame)

RTC periodic
interval timer

PS/2
keyboard

Type fixed
static as

bound to one
of 15 intervals

event driven
based on
keyboard

Frequency
60 or 70

Hz. (display
refresh)

(30.5175 us. to
500 ms.)

upon
keypress or

release

Schedule recurring
(VICKY)

recurring

(TI bq4802)

ad-hoc
interactive

Operating
model

1 per cycle
(follows
raster)

1 per cycle
(timer based) variable

Mask bit
and group

0x01 of
group 0

0x10 of

group 1

0x04 of
group 0

Mavis Beacon was a fictional character from the popular
“teaches typing” series. I was surprised to learn she is not
a real person, but pleased by what I read in this article
which describes the circumstances and impact of her
persona. The original software was published in the mid
‘80s by “The Software Toolworks”.

*

04/2024 - F14

https://users.cs.duke.edu/~ola/ap/linuxwords
https://www.independent.co.uk/news/world/americas/seeking-mavis-beacon-teaches-typing-real-story-b2035096.html

It directly manipulates the text color LUT, therefore, will
affect any character printed with our flash attribute.
The following draft code is about 90% there:
irqhand: pha
2 lda MMU_IO_CTRL
3 pha
4 stz MMU_IO_CTRL

5 lda #INT_RTC ; Check for RTC flag
6 bit INT_PEND_1
7 beq chkps2 ; If not, check for PS/2

8 sta INT_PEND_1 ; If so, clear RTC flag
9 lda $d69d ; Reset RTC status bits

10 dec BLNKCNT
11 beq flash
12 jmp return

flash lda FLSHRATE
14 sta BLNKCNT
15 lda BLNKFLG
16 eor #$01
17 sta BLNKFLG
18 beq unflash

unflash ldx #$00
_loop lda palette,x
21 sta TEXT_LUT_FG,x
22 inx
23 cpx #$40
24 bne _loop
25 bra return

flash lda BCKCOLR
27 ldx #$00
_loop sta TEXT_LUT_FG+32,x
29 cpx #$20
30 bne _loop
31 bra return

chkps2: lda #INT_PS2_KBD ; Check for KBD flag
33 bit INT_PEND_0
34 beq return ; If not, return

35 sta INT_PEND_0

_loop ldy kendptr
37 cpy khedptr
38 beq return
39 lda $D642 ; read PS/2 byte
40 sta keybuf,y
41 inc kendptr
42 lda $D644 ; read PS/2 status
43 and #$01 ; bit 0 = 0 if more
44 beq _loop

return: pla
46 sta MMU_IO_CTRL
47 pla
48 rti

Next time, we will revisit, enhance, and refine an output
routine; we will also tie in getin (discussed on pg. 7
below) and put a bow on our first complete program.
We are working towards a tiny set of character based I/O
routines that when combined, will form a collection of
moderately featured subroutines for program use. Call it
a NanoKernel. Keep your expectations low; we have to
walk before we can run, and we are barely crawling!
Here are some overall design goals:
- the main code will fit entirely within the 8K bank

beneath $C000 and will include a resident monitor.
- the keyboard buffer, IRQ routine and jump vector table

will sit adjacent to the 6502 stack and will occupy no
more than the 512 bytes from $0200-$03FF. It will
consume 16 bytes of zero page memory from $20-$2F.

- Later, IEC support will be added for 1591 and
Commodore 1541 compatible drives including
SD2IECs. Goal = do this by the year 2030.

Interrupt registration and handler code description
The code below is similar to the instantiation code on
page 6 of issue #6 where we installed a time-of-day clock
update routine; the diff is called out below:

The handler routine is straightforward and does 3 things:
1. saves state* (partially), selects the I/O bank,

determines if the interrupt was caused by the RTC
timer or was PS/2, then branches accordingly.

2. if RTC (every 125 ms.), the routine decrements
BLNKCNT towards zero, ultimately exclusive or’ing
BLNKFLG using the same 3 lines of code from the
sprite blink routine. When toggled to 1, it refreshes
the upper 8 colors in the text RGB palette with data
from colors 0 - 7; if toggled to 0, it acquires BCKCOLR
and copies its RGB to LUT colors 8 - 15.
During initialization, the rate is sync’d to match the
VICKY cursor flash rate from bit 1 & 2 of $D010 at
either 1 sec. %..00; 1/2 sec. %..01; or 1/4 sec.
%..10 per cycle. (1/5th of a sec. is not supported)
This may also be altered via new ctrlcode $16 (SYN).
… however, if the interrupt was triggered by the PS/2
keyboard, it will blindly add scan codes to the 256
byte secondary keyboard buffer, placing data into
memory as-is, updating the fill pointer accordingly.
Since we are on “IRQ-time”, we aim to process the
most critical work quickly and then “get out” (we will
convert from the scan code byte stream to ASCII chars
in our main code when getin is called). This is
where the “state machine” comes into play (pg. 6).
Note that we own ~59/60th of the clock in the ‘user’
time domain; interrupt-time in this theoretical model
is akin to ‘system’ time of a Unix system. Even
though this is a simple 8-bit system, it’s a good
practice to approach time in this manner.

3. Finally, return cleans up loose ends by restoring
registers, and RTIs back to the preempted program.

We will not say much about outstrng (issue #4) here,
but will share that the handler code is all that is required
to complete the character flash attribute feature.

3

irqreg:

sei
lda #<irqhand
sta VIRQ ; $fffe
lda #>irqhand
sta VIRQ+1 ; $ffff

; Mask off all but PS/2 in group 0 and RTC in group 1
lda #$ff
pha ; added to save #$ff to the stack
and #~INT_PS2_KBD ; added to prepare mask for group 0
sta INT_MASK_0
pla ; added to pull/seed mask for group 1
and #~INT_RTC
sta INT_MASK_1

; Clear all pending interrupts
lda #$ff
sta INT_PEND_0
sta INT_PEND_1

; Re-enable IRQ handling
cli

The 65C02 interrupt microcode preserves the program counter (PC), status register (S), and the implicated
BCD (D) flag, but we still need to save registers and anything else we meddled with in darkness.

*

04/2024 - F14

WHOOPS !! I forgot to preserve
and later restore x and y !!

The code on lines 36-44 above reads a byte (we wouldn’t
be here unless there was at least 1 byte pending), places it
directly into our y-indexed keyboard buffer then checks to
see if another key is pending*; if so, it branches to the
local _loop; else, it exits.
Along the way, we increment a zero-page variable
KEYPTR, which is our index, pointing to the next byte in
our 256 byte queue.
Earlier in this article (on pg. 2), we mentioned that scan
codes vary in length depending on message type. They
range from a single byte (scroll lock), to as many as 10
bytes (the print screen key) between the key press and
release.
The video highlights a few examples of this scheme and
Ben flashes this cheat sheet a few times. To review, I’ve
compiled the following table which cites several of the
same examples but adds a few noteworthy combinations
that are more relevant to 8-bit retro computers.

About that PS/2 keyboard interface
We don’t have time or space to discuss the inner workings
of the PS/2 keyboard protocol but there are excellent
resources and YouTube content available.
Ben Eater’s “Keyboard Interface” PS/2 masterpiece is a
must watch, and I urge you to spend the better part of 30
minutes doing so. Consider it pre-req to running the F256
PS/2 keyboard sniffer app that we are coding this month.
Or, if time is tight, fast-forward and start at 21:40 and just
watch the last 10 minutes; Ben talks about keycodes
specifically. You can leave the framing and shift register
TTL electronics for another day.

The core of our keyboard handler routine on pg. 3 above
leverages $D642 and $D644 registers. As we have prior,
the following table was borrowed from the F256 manual
and it details the PS/2 mouse and keyboard interface:

Today, we are only interested in the FIFO (first in/first
out) queue associated with KBD_IN, and bit 0 (KEMP) of
the PS2_STAT register; it will contains a bit value of 1
when the keyboard is empty.
If you watched the video above, you’ll be pleased to
know that VICKY dispenses with the framing and parity
bits for us, depositing only the 8 bit byte of each partial
into the KBD_IN register. Pictorially, we are talking about
the green LEDs:

4

8 data bits

The key being pressed here is $1E, or the number ‘2’ (non-
keypad). Note that the yellow LED is illuminated in order to

create “odd parity” (there are 4 green bits on). These 9 bits are
book-ended with the red start/stop bits totaling 11 bits.

 [odd] parity bit

type of key
or activity

of
bytes

‘on’ value aka
make code

off value aka
break code

Scroll
Lock ‘special’ 1 $7E n/a

lower
case ‘a’

standard
keycode 3 $1C $F0, $1C

‘c’ standard
keycode 3 $21 $F0, $21

Shift
(left)

standard
keycode 3 $12 $F0, $12

Ctrl
(left)

standard
keycode 3 $14 $F0, $14

Left
Arrow

extended
keycode 5 $E0, $6B $F0, $E0,

$6B

Enter extended
keycode 5 $E0, $5A $F0, $E0,

$5A

capital
‘A’

multikey
sequence 6 $12, $1C

(shift), (letter ‘a’)
$F0, $1C,
$F0, $12

^c

 (ctrl c)

multikey
sequence 6 $14, $21

(ctrl), (letter ‘c’)
$F0, $21,
$F0, $14

Pause/
Break ‘special’ 8

$E1, $14,
$77, $E1,
$F0, $14,
$E0, $77

n/a

It’s unlikely that there be a single byte in VICKY’s
keyboard buffer so we may as well check KEMP and
read whatever is pending while we are here. There is
less overhead checking KEMP ‘that one-last-time’ than
there is exiting the handler and winding up here again. In
addition to the outer-most reaches of the handler code,
the CPU itself incurs some amount of overhead every
time the IRQ is raised.

*

04/2024 - F14

https://docs.google.com/document/d/1w--ouGvSSf93tFltmBcSRGMN8Rte7ayalQZRDPG0ezk/edit
https://www.youtube.com/watch?v=7aXbh9VUB3U

Finer points of an 8-bit keyboard queue use-case
Unlike a stack (which adds and reads based on a single
pointer position), a queue adds and reads from different
pointers and they [typically] move independently.
Examine the following scenarios and behaviors which are
modeled using a 48-byte queue depicted below:
• Queue pointers will advance in one direction only

(increasing; or left-to-right in our diagrams); but they
will eventually wrap back to zero; this is by design.
Importantly, the end-ptr may not pass the head-ptr.

• By checking to see if ‘end’ = ‘head’ in our code
(below), we can trap “full queue” conditions and
prohibit additional adding, thus avoiding corruption that
is sure to result when we lose bytes at the head end.

• 16 and 32 bit architectures (and high level languages
such as ‘C’ and Python) can more easily support large
queues without hardship, but here in 8-bit land, we
would need to manage carry bits and 16-bit pointers.

• The following depicts an empty queue, after processing
the name of Rob Zombie’s most acclaimed solo effort:

• The following illustrates a queue which has wrapped
but is still coherent. You’ll note that the old data is
present (depicted in grey) but as far as the pointers and
algorithm are concerned, it does not exist.

We have read up to and including “all of ”. The text
which is still in the queue and valid to be read includes
“Zombie’s releases wit”. As rest has already been
processed; rendered in grey text.

• Should the buffer fill (when kendptr = khedptr as
tested on line 37 below), our handler will exit.
Regardless of address, the situation is as follows:

- kendptr advanced following the most recently
added keystroke (byte), so this address is in theory,
the ‘next’ byte in the buffer to be written to.

- khedptr is pointing to a byte in the buffer that has
not been read yet, but it is valid and waiting.

- this condition will persist (no more bytes added
and no change in pointers) until user code calls the
getin subroutine, which reads the aforementioned
but-not-yet-read byte and advances khedptr by 1.
At this point, the keyboard buffer will again be
open for business, but only for 1 byte (for now…).

The following is an excerpt from irqhand on page 3:

^
s witilly Deluxe outsold all of Zombie’s release

A quick review of [generic] stacks and queues*
One of the most basic data structures in software is a
stack and the 6502 and other processors and languages
rely on them heavily. They require a consecutive range of
bytes for ‘pushed’ data, and a single pointer (typically
one byte) which points to memory locations where data
will be pushed to or pulled from.
In the context of the 6502 processor, when you cause a
byte to be pushed onto the stack, the stack pointer move
by one position (for illustration, if it started at $FF, it will
now contain $FE); pull from the stack and the pointer
moves one position in the opposite direction (it increases
by one). At one extreme, the pointer = $FF and the stack
is empty; on the other, the stack pointer is $00 and the
stack is absolutely full. Decremented further, and the
pointer will wrap around the famous “stack overflow”
condition results. Stacks are known as LIFO data
structures; last-in-first-out. For a visual representation of
a stack, see pgs. 9-15 from Philip Koehn’s Johns Hopkins
University materials here.
A queue is different and requires two pointers; an ‘end’ of
queue, and the point in memory where data will be read
from, or the ‘head’ of queue. Think of a line of
customers; you get on line at the end; the next customer is
serviced from the head of the line.
When ‘in’ = ‘out’, the queue is empty. If the two pointers
cross, the equivalent of an overflow condition can occur.
Well architected queues (when full) simply will not allow
additional data elements to be added. They either return
an error condition or alternatively, continue operation but
do so without changing the distance between the head and
end pointers. Consider the following examples:

Upon initialization, ‘end’ = ‘head’ and the queue is empty.

With one byte (‘H’) added, ‘end’ is advanced 1 byte (from
$0200 to $0201).

The next byte has been added (‘e’), ‘end’ is again
advanced (from $0201 to $0202). No reading as of yet.

Now (‘l’) is added (‘end’ is now $0203).

Finally, the ‘H’ character is read and ‘head’ is advanced.
The char is still in memory, but the queue contains “el”.

5

$0200

^

^ insert point is currently at $0200 (end of buffer)

read point is also at $0200 (head of buffer)

^

^H

^

^He

^

^Hel

^

^Hel

$02FF

pointer direction ->

^

_loop ldy kendptr
37 cpy khedptr ; test for full buffer
38 beq return
39 lda $D642 ; read PS/2 byte
40 sta keybuf,y
41 inc kendptr
42 lda $D644 ; read PS/2 status
43 and #$01 ; bit 0 = 0 if more
44 beq _loop

Hellbilly Deluxe
^

^

Our keyboard handler will need to work with keycodes (not clear text); but the queue algorithm is identical*
04/2024 - F14

https://www.cs.jhu.edu/~phi/csf/slides/lecture-6502-stack.pdf

In the context of the F256 integrated keyboard, one
outcome might be to change the color of the cursor from
WHITE to CYAN; one might be to terminate a running
program; one might be to pause screen output or trap to
enter a machine language monitor for debugging, or to do
something special when a sequence of keys are pressed.
These examples are very old-school but novel on our
platform; to my knowledge, none of this is supported by
the F256 today; but that is about to change.
For this part of the project, we begin with an initial state:

• all locking keys ‘off’
• no keys pressed
• keyboard initialized (PS/2 keyboard)

On the prior pages, we discussed and provided references
to understand the PS/2 protocol and a method to get the
next byte and place it in-queue. To accomplish our goal,
we will track the state of pressed and released keys so we
know which keys were shifted (for upper case letters, of
course; but also for ‘$’ instead of the numeral ‘4’ when
appropriate. This diagram is a good for our purposes:

The flowchart below, borrowed from a Jon Titus article, is
also good-enough. Once implemented, it will convert the
PS/2 byte-stream into upper and lower case ASCII. It’s
not awesome, but we can improve it over time. One
notable omission is support for CTRL key combinations
that we (I) love. We will need to add support for that in
our code.

State Machines: my first, favorite, and the PS/2
In the early ‘90s, I attended a class at NYU based on
Goodheart & Cox’s “The Magic Garden Explained”. It
was a Unix Kernel internals class but you’d never guess
that from the book title.
The final project was to write a State Simulator in the ‘C’
language. Interestingly, the course had no prerequisite for
proficiency in ‘C’ which to me, was amusing; some of my
classmates were not amused.
The program (statesim.c)
had to simulate a Unix OS,
including a working shell
that allowed processes to be
init’d, forked, managed to
and from background/
foreground and terminated;
it had to support signals
(SIGWAIT/semaphores),
process scheduling &
priority, and had to display
‘state’, including
consumption of resources
and availability.
It was my first experience having to consider and track
resources then develop a system to manage them from
nothing but a written specification and the input/output
functions of <stdio.h>. Of course it was theoretical,
but it was challenging and profoundly impactful to me.
I did not think much of it at the time, but looking back,
each process was in one state at any particular point in
time (sleeping, running in the foreground, running in the
background, waiting on a message, terminating). It was a
state machine simulation before I knew such a concept
existed. The title should have been a clue (it wasn’t).
But by far, my favorite state machine of all was the 1974
Gottlieb Electro-Mechanical machine that an eBay seller
at the other end of New Jersey was showing me (but
would not sell to me because it was already sold!). It
contained a massive array of latch relays, stepper units,
mechanical flip/flops, score motors and reels, binary and
decagon counters, and solenoids, all to track gameplay as
a single steel ball raced around the playfield striking
targets for recreation. It was Pinball.
And here we are, the subject of the moment is a keyboard
state machine. When combined with a handful of other
routines, it will contribute to a minimum viable platform
to capture keyboard input and display multicolor text.
With it, we can write something simple and useful.
A state machine is an algorithm that can track matters and
be in one of a number of valid states at a given time. It
can also change from state-to-state in response to external
inputs. A finite state machine is defined by a list of
known states (including an initial state) and the
conditions for each transition between. This is, more or
less, the Wikipedia definition and it is lofty; especially as
captured on this page. But it’s a framework for tying user
actions to desired outcomes and it will serve its purpose.

my NYU code (cryptic)

6

death by pointers (but it worked)

04/2024 - F14

https://pubs.opengroup.org/onlinepubs/7908799/xsh/stdio.h.html
https://statecharts.dev/what-is-a-state-machine.html
https://www.nutsvolts.com/magazine/article/get-ascii-data-from-ps-2-keyboards

getin - Reading from keybuf (low budget version)
Continuing the discussion from the queue illustrations on
pg. 5, calling getin will return the ‘next’ character (‘Z’
in ‘Zombie’) from the keyboard buffer pointed to by var
khedptr. This is the queue head. If buffer is empty
(kendptr = khedptr), 0 is returned.

With data in keybuf, the 8 lines of code takes care of it.
Remember, the interrupt handler at the bottom of pg. 5
(detailed in full on pg. 3) is the 1st half of the picture. It
fills the keyboard buffer; this code empties it, one byte at
a time as getin is called.

The Commodore Kernal version of ‘getin’ returns
values which match PETSCII (ASCII) keypresses. We’ve
not yet dealt with the complexity of the PS/2 keycodes,
but the code will work just the same; it’s just returning the
next byte from the queue via (a)ccumulator.
To get actual ASCII and support special keys, we need to
build further. We can write a more robust, monolithic

^
s witilly Deluxe outsold all of Zombie’s release^

getin ldy khedptr ; load index in case char
51 cpy kendptr ; check for empty buffer
52 beq _return ; branch if empty
53 lda keybuf,y ; else, load from buffer
54 inc khedptr ; advance head ptr
55 rts
_return lda #$00 ; if no keys in buffer, null
57 rts

chars read from here &
(khedptr)increased

this pointer (kendptr) is read
for compare but not modified

version of getin (which applies the logic in figure 6a), or
we can leave this subroutine simple. For today, we will
choose the latter because it isolates the functionality and
makes debugging more simple.

getline - Read a line of text using getin
This subroutine lets the user to enter a string of variable
length characters up to n (but not longer than 254), storing
the entered text in the low byte (y register) / high byte (x
register) which points to inbuff. An input limit (# of
chars) may be specified in the accumulator (a).

- if the user types a backspace key (keycode $66), the
string will be shortened by 1 character.

- if the user presses the ESCape key (keycode $76), the
buffer will zero and be set to null.

- if a carriage return (enter) is pressed (keycode $5A),
the accumulator will be set to the length of the
entered string, a null ($00) will be stored in the string
buffer (at length + 1), and the routine will exit.

- extended keycodes (alt key, and function keys) are
discarded/ignored for now, but we will handle the
CTRL key.

- the CapsLock key toggles caps only. It’s not a shift
lock, it's CapsLock which is the way modern
keyboards work. But contrary to PCs, the combo
CapsLock’d+shift will not result in lower case.

Next time; more discussion on this topic, a look at some
working code, and an intro to a familiar character output
routine (CHROUT), complete with some bells and
whistles.

In retro-retrospect: One year ago
A few words about this article and a recently published set of videos that might be of interest

Work on this article began in March of 2023 but had to be
put on hold to spare cycles for prep of the Foenix exhibit
at VCF East. The preparation included hardware,
software, and several hundred pages of printed handouts.
Three Foenix systems were ready along with an Apple
II+, monitors, and accessories, when an untimely stumble
off a commuter rail platform landed me in the hospital for
a MRI which led way to a spinal procedure, too many
meds, two months of disability, and 6 months of physical
therapy. My writing career was over.
Fast forward to today and I’m writing again and ready for
VCF East, but this time as a volunteer. My back is in
better shape thanks to that wake-up call, and I’ve picked
up part of what I left behind (finishing this article).
Several other efforts are still waiting for their turn. I’ll
get to them eventually.
The impetus for rescuing this work was a series of
Discord posts seeking a low-budget (sans kernel) input
output routine. Note that we are not discounting the
usefulness of Microkernel, it’s just that sometimes, simple

is better and a great way to learn about a machine is to get
in there and build from the hardware on up.
It is in this spirit that I'd like to draw your attention to Ben
Eater’s works (again) and his recent videos where he ports
Wozmon, pulls and assembles a version of Microsoft
BASIC, and ultimately, writes an interrupt based
keyboard input routine, similar to what we just discussed.
Had I completed this article a year ago, I would have
beaten Ben at this one tiny thing! Maybe next time.
To add to the “Keyboard Interface” YouTube video link
on page 4, here is a short list of Ben’s latest. Whether or
not you buy his kit from Jameco, his videos are relevant
to our platform, and extremely well produced. Enjoy!

"Running Apple 1 Software on a breadboard (Wozmon)"
"Adapting Wozmon for the breadboard 6502"
"A simple BIOS for my breadboard computer"
"Running MSBASIC on my breadboard 6502 computer"
"How input buffering works"

704/2024 - F14

https://eater.net/6502
https://www.youtube.com/watch?v=HlLCtjJzHVI
https://www.youtube.com/watch?v=7M8LvMtdcgY
https://www.youtube.com/watch?v=0q6Ujn_zNH8
https://www.youtube.com/watch?v=XlbPnihCM0E
https://www.youtube.com/watch?v=mpIFag8zSWo

	Apr. 2024 / F14
	(FLASH!)

