
My winter break projectLong format return
It’s that time again! Not only is it the “Toys ‘R
Us time of year”, it’s also time for a full issue of
Foenix Rising to close out 2023.

This year brought continued growth to
Foenix platforms and to retro-tech in general.
Lots of software projects, feature releases,
and new hardware options to choose from.
Through November, five developer-centric
FLASH! issues were published ranging from
6-11 pages in length; this issue returns to the
classic multi-article format and more variety.
Guest contributor Ernesto Contreras is back
with a graphically oriented feature. We also
interview Boisy Pitre about development of
his NitrOS-9 Level 2 port, time working at
Microware, and his other interests.
If you've been around Foenix for a while but
were not aware of this Newsletter, click here
to download a full copy of Issue #4 (the most
recent full issue - from Nov./Dec. of 2022).
It’s always interesting to see where we were 12
months ago. And don’t forget our YouTube
channel and Content Store; links on page 2.
Wishing you a relaxing year-end with family,
friends, and your Foenix systems.

Issue #13 - Classic formula

VTOC - volume table of contents

Publisher’s notice, resources, and a few looks at nanoEdit’s data editing modes brought to you by Lair of the Lich King 2

MicroKernel DOS - Hidden beneath SuperBASIC exists a set of system tools, providing support for disk operations and
general utility. This article digs into example code, discussing how to use MicroKernel in the process. 3 - 9

F256 Binary Files and Headers - A guide to 3 types of binary files / (plus a TinyByte re: 65C02 CPU reset - bottom of pg. 22) 10

Interview: Boisy Pitre - A discussion with Developer, Author and primary contributor to the NitrOS-9 Level 2 project for the
FNX6809 equipped F256 platform 11 - 14

Illustrating 8-bit dreams - Connecting the greatness of early home systems to the F256. A look at history, a few modern
graphic formats, and a set of SuperBASIC utilities to leverage graphic assets from your own Foenix programs. 15 - 22

nanoEdit ‘data’ mode - a quick preview of an editor mode useful for interrogating and manipulating binary files on the F256 23 - 24

Commodore’s Christmas Demo Rides Again - subtitle: “all I got for Christmas was this 1/2 working Christmas demo; but I
have to admit, it’s pretty damn cool…”

25
 (of course)

December 2023

You should not be surprised to hear that I have other things
going on in my life; we all do. So let’s talk about something
completely different; Commercial arcade games :)

While at VCF Midwest in
September, a Foenix-friend and I
visited the Galloping Ghost
Arcade; said to be the largest in
the U.S., with 958 games on the
floor. Not only do they have all of
the classics, but also, games
you’ve never heard of.
Oddly, I was drawn like a magnet
to a mid-’90s arcade driver called
“The Great 1,000 Mile Rally”,
based on the Mille Miglia,
released by a little known
Japanese company called Kaneko.

As happens, sparks of mild interest lead inevitably to visions of
arcade grandeur, and I found myself on eBay buying a Jamma
equipped board-set; then to Amazon for a
wiring harness and a new power supply. Then
back to eBay for the beat-up hobo arcade
steering wheel (and pedal) that you see on the
right. Of course, I’ll need to paint it red.
I thank this video for what will either turn into
an expensive time sink, or an extremely
satisfying addition to my home arcade that my family (me) will
enjoy for years to come. Stay tuned for an update later …

http://apps.emwhite.org/shared-files/718/?Foenix-Rising-Issue-4-Nov.-Dec.-full-1.pdf&download=1
https://www.gallopingghostarcade.com/
https://www.gallopingghostarcade.com/
https://rossoautomobili.com/blogs/magazine/this-is-why-the-mille-miglia-was-discontinued
https://www.youtube.com/watch?v=0xO6Mcy4mNw

Foenix Rising is a user-supported, not-for-profit
hobbyist’s newsletter published in Murray Hill, New
Jersey, USA supporting Foenix Retro Systems products
with a focus on software development & retro tech.
Distribution: ~210-1

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’
other motto: ‘… because details matter’
Correspondance:

212/2023-Full

What do these pics have in common?
 This is not a test, it’s a humble brag and a bit of an advert - nanoEdit’s ‘data’ mode take shape on pg. 23

Micah Bly’s soon to be released “Lair of the Lich King” is pictured on the bottom right. The 80 x 50 text file (4000 bytes)
was harvested from a prior version and pulled into nanoEdit’s data mode as a test case. nanoEdit is still in development
and will be for some time, but as I hope you can see, it will be a great programmer’s aid or general purpose text editor.

In unadorned 80 x 60 ‘text’ mode (note the
bottom left status line), data is all over the place;
much of it unprintable, some replaced with
tokens; word-wrap “does its worst”.

In 80 x 30 ‘data’ mode, the image begins to take
shape. Unprintable characters are represented by
custom chars indicating hexadecimal byte values.
The aspect ratio is off, but you get the idea.

Same as above right but in 80 x 60 mode. Micah’s
game is the subject of a few jabs in the two-page
article below and was the perfect example to
demonstrate a few of nanoEdit's new features in
context.

“Lair of the Lich King” is a multi-level rogue-like
dungeon crawl adventure game that takes
advantage of the F256 80 x 60 character screen
and redefined characters. It has a deep rule set,
leverages a random playfield generator, and will
keep you amused, engaged, and terrified for hours.

Foenix Resources for reference or to get started
• Foenix Retro Systems Home Page
• Foenix Discord Invite
• Stefany Allaire Patreon Page
• Stefany Allaire Twitter
• Foenix Marketplace content ‘store’: home of

Foenix Rising
• Foenix Wiki (in-build but improving every day)
• GitHub hosted ‘home’ for doc, code, and data

http://c256foenix.com
https://discord.gg/gzEQSKagN5
https://www.patreon.com/bePatron?u=56480700&redirect_uri=https://c256foenix.com/?v=b174a31115af&utm_medium=widget
https://twitter.com/StefanyAllaire/status/1560776205716008961
http://apps.emwhite.org/foenixmarketplace/
https://wiki.f256foenix.com/index.php?title=Main_Page
https://github.com/FoenixRetro

312/2023-Full

MicroKernal DOS & more …
 A practical command primer, a look at binary file types, and sample MicroKernel code “for the rest of us”

(Thank you to Celton, dwsJason, and Gadget for helping me troubleshoot and ultimately, round out my knowledge on these topics)

.PGZ files take this a step further and support multi-part
or multi-segment files. The rest of this article will
discuss .PGX files; we’ll get to .PGZ another time.

Info on .PGX files can read about on the Foenix Wiki
here. Here is a F256 appropriate sample header:

Generic.bin files, on the other hand, are binary files
with no identifying load address or embedded execution
information. .bin files are either pushed into a specific
address with the F256 Uploader/Updater utility or loaded
to a specified address using BLOAD in SuperBASIC.

Still, a 3rd type of binary contains an auto-execute
header, akin to the Commodore 64 “CBM80” cartridge
standard. Called a ‘KUP’ (kernel-user-program) it will
startup on reset when detected in low-RAM (if DIP 1 is
set), expansion RAM, or in a flash cart or memory.

MicroKernel DOS Command overview
We won't cover all of the commands, but have comments
on several and have included links to other sources.
- {program}.PGX - execute code from the default
path. As from SuperBASIC, the space is required.
Change Drive - by typing a number [0 .. 4] followed
by a colon, you change the drive which will be acted
upon as default (the prompt will change). 0 corresponds
to the built-in SD card (if present), and 1 .. 4 maps to
IEC bus devices 8 .. 11 respectively.
ls or dir - either command will list the directory
starting with the disk label (if assigned) followed by one
line per file and its size in blocks in hexadecimal format.

One SD disk block is equivalent to 256 bytes of data,
however, on IEC devices, a disk block is 254 bytes of
data. Fun fact: the ancient Commodore disk format

Introduction - to use, type “/DOS” from SuperBASIC
By typing these four simple keystrokes and pressing
<enter>, you can escape SuperBASIC and enter a world
where you are afforded a variety of additional commands
for managing your F256K, including:

• traditional disk functions including formatting
• viewing flash memory banks installed
• creating text files (BBS style) or dumping the

contents of a file in ASCII or hexadecimal byte form
• testing the keyboard
• configuring the optional WiFi interface

This somewhat hidden layer sits somewhere between the
utility of a Commodore’esque DOS wedge, and the
command set included in MCP (the operating
environment for A2560 family machines, written by
Peter Weingartner).
The drive numbering system is identical to the
convention used within SuperBASIC, namely, drive ‘0’
for the built-in SD interface, and drive numbers ‘1’, ‘2’,
and so on, for IEC bus connected peripherals.
Figure 3a represents MicroKernel DOS help; if you are
running an older kernel and see something different,
check pg. 2 for information on updating your system.

Running .PGX files
There is now a vetted method for executing .PGX or .PGZ
files. You an do this from SuperBASIC’s screen editor
or from DOS (with a slight syntax
variation). From SuperBASIC type
the following:

 /- {program}.PGX

A .PGX is an executable file similar
to a ‘.com’ or ‘.exe’ on Microsoft
DOS or CP/M systems. It might
also be compared to a .PRG file on
vintage Commodore systems,
however the latter is primitive by comparison. At the
lowest level, these types of files have headers identifying
the load address. In the case of .PGX, this is also the
execution address and qualifying machine information.

Offset Count Example Purpose
0 3 "PGX" Signature
3 1 $03 CPU
4 4 $08 $40 $-- $-- Destination addr
8 - $20 $21 $12 ... Data to load

Note: CPU type $01 (as detailed on the linked page) represents the
WDC 65816 CPU; $02 is 68K family; $03 is the 6502, proper for the
F256 platform.

Figure 3a - DOS help

mind the gap; a space is required

Pro tip: the update of FLASH blocks containing the F256
Kernel, DOS layer, SuperBASIC, and other operating code
and utilities is pushed through the F256 USB-mini interface
using a simple cable to your host. From a software perspective,
you will need either the FoenixMgr framework (requires Python),
or the Windows based F256 Uploader application*.
This is different from the VICKY (FPGA) update procedure
which requires a ‘blaster’ device connected to the 10-pin (2 x 5)
JTAG header and the use of the Intel/Altera Quartus software.

Perifractic demonstrates the Windows based F256 Uploader here.
You can also use it to write your own programs to flash!

*

convention

https://www.youtube.com/watch?v=TJQgecozNzU&t=483s
https://wiki.c256foenix.com/index.php?title=Executable_binary_file

412/2023-Full

lsf - generates a list of programs resident in flash
memory. The graphic and callouts below provide an
example ‘build'. This might be considered an advanced
topic, but it's good to have working knowledge for the
simple reason that a misstep during a code push can ‘brick’
your system. But rest assured, mishaps are easily corrected
and there are plenty of advanced users on Discord eager to
help. In my case, I learned that uploading an 8,192 byte
file of nulls could be used to disable an errant auto-start
image Our community is a full circle of beginner,
intermediate, and advanced users and developers. We
depend upon, and help each other every day. Yet another
reason why the Foenix platform is unique.
rm or del or delete {file} - allows deletion of a
file. It is possible to explicitly identify a drive which is
different from the default by preceding the file name with a
drive number: “rm 2:{file}” as an example to remove
the named file from IEC device #9.
keys - invokes a utility which tests the use/action of your
input devices (keyboard and joysticks) against kernel event
routines. From a practical standpoint, this utility does not
serve much of a purpose except to check for broken
switches or keys, or to highlight anomalies in PS/2 support,
but it’s an excellent example of working code which is
built using MicroKernel services. Example sources are
freely available in a GitHub repository, discussed on the
next page and used as an example project in this article.

obeyed by JiffyDOS in your FNX1591 (and other IEC
devices) used bytes 0 and 1 of each sector to link to the
next track and sector. Track and Sector editors such as
“Disk Doctor” pictured on page 16 of issue #4 gave the
user the power to interrogate and edit data on disk
sectors directly. Perhaps some enterprising individual
will write a T+S editor for the F256 platform?
write {file} - create/write a text file to disk using a
“bbs” style line editor. Note that I am calling the line
editor bbs-style; there is no doc suggesting this, but I
have a few clues that Gadget spent a fair amount of time
on tty connected systems in the good old days.
The line editor opens tabbed to column 4 (these spaces
will not appear in your file) and allows printable ASCII
characters to be entered, up to 75 characters per line.
Each line is terminated with a carriage return aka ASCII
0x0d (which is added to your file) and you may
continue to append until ‘.’ is entered on a blank line
(the ‘.’ and final return is not added to your file).
dump {file} - read and display hexadecimal values,
16 at a time until end of file is reached.
read {file} - read and display ASCII values until
end-of-file is reached. Bonus feature: there is no harm is
displaying binary data using this command since graphic
glyphs are bound to all 256 ASCII values. The only
character interpreted by DOS’s simple output routine is
ASCII 13 (carriage return). Hence, you will never
experience the peculiar behavior such as screen clearing,
odd colors or erratic cursor motion as experienced on
legacy platforms or vt* type ASCII terminals.
To relive the power of leveraging inline control codes in
a PETSCII context for constructive means, see this video
:)

This is the DOS shell release date
(corresponds to flash block 06 in this

example; this is the binary for the DOS
shell, itself)

SuperBASIC ‘HELP’ - a near-line manual
A rudimentary viewer and the full text of most of
the manual bound within this 5 block package;
recallable by typing “/HELP” from SuperBASIC

(note that if you have an unsaved program, you will
be asked to confirm before exiting)

xdev framework
Tools to support cross-

development and specifically,
file transfer from host to your

F256 platform SD device # of registered devices
is: 3; dev ‘0’ (SD),

‘1’ (IEC 8), and ‘2’ (IEC 9)
SuperBASIC
4 x 8k blocks

containing
binaries

DOS binaries
(The interpreter and
code described in

this article)

‘-’ pexec binary
Callable from

SuperBASIC or DOS
to load and

exec .PGX binaries

But where is MicroKernel? - lsf does not provide the visual; however, in the current distribution (as of December 2023),
MicroKernel occupies 5 blocks ($3b .. $3f); Quiz: how much flash is left for the user? Answer: plenty (47 x 8k blocks !!)

My generation was scarred by ‘inhabitants’ purposely picking
up the phone extension at home, intentionally interrupting
the glory of 300 bps analog modem surfing. Characters
became garbled, throwing ctrl-codes to the terminal, trashing
the display or worse, switching to a foreign DEC character
set. THE WORST, was having to restart a binary download!

retro remnant: land-line warfare

lsf Command deep-dive
Figure 4a

5

wifi {ssid} {passcode} - assists in configuring
the ESP Feather board with your WiFi network and
password, if installed. I do not own one (yet) but here
are a pair of YouTube videos that discuss this topic:
• Foenix Discord user ‘PJW’ published this video in

mid-July of 2023; access it here. This video focuses
on the software aspect of the job and is highly
detailed and comprehensive.

• Foenix Discord user ‘1Bit Fever
Dreams’ published a video in
early December of 2023; it can
be accessed here. It covers a
number of new use cases and a super close up view
at soldering steps. For visual learners (I'm one), this
will be invaluable.

I recommend watching both before attempting the
upgrade. In addition, as pointed out in the 2nd video,
there is a new option available to those purchasing their
systems, to buy them WiFi enabled for a modest
additional charge.

MicroKernel Code samples
When Gadget released DOS, her intention was twofold.
On one hand, she knew that SuperBASIC was, well…
basic; disk utilities were absent, as were utilities for
developers interested in interrogating files (the ability to
dump file data in hex format), for example.
She has also pointed to DOS as a kernel programming
example; it demonstrates event use and device access
code for at least 85% of the functions.
A third unintended benefit of hosting an evolving
platform utility within DOS is to keep SuperBASIC
confined and focused, thus leaving more memory for
user-developed BASIC programs. This will allow DOS
to expand over time, serving as a MCP-lite environment
where other applications can be integrated and launched.
Let’s conduct a mini case study of the DOS “keys”utility,
(inside-out) in an effort to provide a MicroKernel starter
app, and to answer one of the most oft asked questions
about writing code for the F256: “how do I scan/read the
keyboard and joysticks. Is there any example code?”.
The answer is: “It’s easy”, and “absolutely”; not only are
the full sources for DOS published in this publicly
available GitHub repository, but we’ve extracted “keys”
and wrapped it within a small .PGX executable,
specifically to make it more lean and understandable.
I took some liberty in the process, simplifying some
amount of Gadget’s original code to lessen the
dependancies on associated display code, and have also
reduced the use of sections and namespaces. I’ll point
out a few highlights in the code listing below.
Before looking at the source code, I suggest running the
DOS utility yourself by typing “keys” at the DOS
prompt. Once in the app, press keys and various
combinations of meta-keys (also, a joystick) and observe

the behavior. Notice key combinations, and how it
works from a mapping and user interface perspective.
This will come in handy when you study the code later.
The following partial screen shot shows the finished
product. A simple line of descriptive text was added to
frame the data by ‘type’. This is just window dressing,
but adds flair. Remember our motto: “details matter”.

MicroKernel Use Prereqs
Three steps, and then you may start calling functions to
process events or otherwise address devices. It should be
stated that not all of MicroKernel’s vectors leverage
argument passing; kernel.Display.Reset at $ffcc
for example, is one that does not. This is among the first
things we do (line #20) in the code below (pg. 8).
Ok, here’s the drill:
Step #1: declare event struct vars - in 64tass, we do this
by adding the following single statement to our source:
event .dstruct kernel.event.event_t

This line informs the assembler of MicroKernel data
structures (imported from the api.asm include file in
step #3). Within your program, memory is required to
house values such as event.key.ascii (see the
example below). You might notice in reviewing this, a
range of addresses overlap beginning at $418c; this
memory is reused and is populated based on the event
type. In your code, you simply access elements as
appropriate after NextEvent returns a given type.
4189 event .dstruct kernel.event.event_t
4189 type .byte ? ; enum above
418a buf .byte ? ; page id or zero
418b ext .byte ? ; page id or zero

418c key .dstruct kernel.event.key_t
418c keyboard .byte ? ; keyboard ID
418d raw .byte ? ; Raw key ID
418e ascii .byte ? ; ASCII value
418f flags .byte ? ; Flags (META)

418c joystick .dstruct kernel.event.joystick_t
418c joy0 .byte ?
418d joy1 .byte ?

418c timer .dstruct kernel.event.timer_t
418c value .byte ?
418d cookie .byte ?

418c tcp .dstruct kernel.event.tcp_t
418c len .byte ? ; Raw packet length

Step #2: Inform the kernel of the address of event. In
step #1, we provided the assembler with details on how
we intend to address data we are accessing, here we tell
the kernel where it lives, using <# and #> directives.
The low-byte and high-byte values are stored to
kernel.args.event and kernel.args.event+1.

12/2023-Full

left-shift; ALT pressed
after the fact ordinary keys

(however,
upper case)

F4 left nibbles (“00”) is JOY1;
right two (“18”) is JOY2
representing button #1
(“18”) and RIGHT (“18”)

si
ng

le
 o

cc
ur

re
nc

e
of

 $
4
1
8
9
-
$
4
1
8
b

 $
4
1
8
c

 is
 re

pe
at

ed

https://www.youtube.com/watch?v=UgsJo53sJrw
https://www.youtube.com/watch?v=gJ9rZczDlfA
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/tree/main/dos

6

There is nothing more to discuss here, it is taken care of
on lines 24-27 and never worried about again.

Here is the code (again, from our ‘sak’ example aka
stand-alone-keys). This is unchanged from the original:
 lda #<event
 sta kernel.args.event+0
 lda #>event
 sta kernel.args.event+1

Step #3: Add api.asm to your Makefile, or ‘include’ it
directly into your source code (this will vary based on
the assembler being used; If you are a C lang developer,
there are .h (header) and .lib files in the cc65 folder of
the repo but here is how you do it in 64tass):
 .include "kernel/api.asm"

That's it for setup. Here is a preview of ‘use’ code aka
the event loop (discussed in detail in the code listing
below):

_loop jsr kernel.Yield
 jsr kernelNextEvent
 bcs _loop
 lda event.type
 cmp #kernel.event.key.PRESSED
 beq _pressed
 cmp #kernel.event.key.RELEASED
 beq _released
 cmp #kernel.event.JOYSTICK
 beq _joy
 bra loop

Memory use and the manifestation of event
The following 3 pages contain an excerpt of the 64tass
list output file for this project. If you’ve looked at these
prior, you'll know they are useful for debugging, but tend
to be oddly formatted and difficult to read; we’ve
improved this by inserting line numbers, aligning cols,
and annotating some key points including the struct
hierarchy.
From a memory use perspective, you’ll note that the
code portion of the program (in blue text) is only 67 lines
long, and it consumes 137 bytes of memory.
Meanwhile, data (highlighted in bolded purple text) is
256 bytes in total. In summary, here is the footprint:
.PGX header 8 bytes $4000 - $4007
— code — 137 bytes $4008 - $4090
‘digits’ data 16 bytes $4091 - $40a0
Welcome text* 232 bytes (at end) $40a1 - $4188

So, as far as 64tass is concerned, the binary file produced
is 393 bytes. That's cool, but how do the event vars
figure into the mix?

You’ll have to study the .lst file to see what's really going
on; the orange text on the next page represents the
MicroKernel event struct definition in full, and as
discussed, the act of adding api.asm to your code and
declaring the datatype welcomes it to your program.
A key point to understand: the define struct directive
(.dstruct) does not reserve any memory, it merely
establishes the structure as a template so the assembler
can do its thing and resolve references. If you look on
the next page, you'll see that the section begins at address
$4189 which is the first byte following the welcome
message termination null ($00) on line #89.
It is strongly suggested to take care and avoid using this
memory for something else such as storing local/temp
variables. Doing so would be the equivalent of declaring
a struct in the C language, calling malloc() to grab
memory from the heap (thus obtaining a pointer to it),
then writing to the address explicitly elsewhere in your
program (creating a mess). So use the ‘?’ directive
religiously to avoid this. 64tass will keep track of
memory, and keep you out of trouble.

Where are the MicroKernel Vectors? (entry points)
api.asm also includes directives to calculate vectors
along with a slew of constant definitions to make life
easier. We stop short of including it in this article, but
you’ll see the addresses explicitly detailed within a
contiguous area of memory near the end of bank 7
($e000-$ffff) in the .lst.

What about writing to devices and setting attributes?

Also in the .lst (also not captured below) you'll see a ton
of detail concerning devices that accept parameters such
as network devices, common disk functions, timer
settings, and char ‘drawing’. In this case, MicroKernel
uses a structure similar to event_t, but living in a
dedicated and reserved area of memory at the top of zero
page ($F0-$FF); the important point aside from the fact
that the overlap scheme is similar, is that this 16 byte
area of memory is the only portion of zero page that
MicroKernel needs. The “memory model” section of
this README, covers this topic in detail. The doc is a
must-read; it is concise and extremely well written.
Our example doesn't use any of these vectors so we
won't cover it in this article, but have a look at the full
repo, and look specifically at reader.asm and
cmd_wifi.asm for disk read and TCP/IP examples,
respectively.

12/2023-Full

welcomemsg contains whitespace padding, required so text
wraps at 80 cols (yes, this is wasteful). This approach was
chosen to keep the display routine dead-simple, versus being
clever with pointers, interpretation of new lines, etc.

In the real world, you might use a simple or full featured
display library as Gadget’s original “keys” program did.

*

The following few sections delve into advanced use of 64tass
and expand upon Gadget’s use of the assembler’s more
interesting features. It is *not* absolutely necessary to gain
this understanding to use MicroKernel effectively, but it will
help you down the road, especially if the complexity of your
own programs grow. It will also help you as you begin to
borrow and maintain code from Gadget and other Foenix
developers. I am just coming to grips with it, myself. In my
opinion, it’s worth the focus and effort.

‘yielding’ is an interesting
topic (to be discussed in
future); for now just know
that this gives some time
back to the kernel

https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/dos/reader.asm
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/dos/cmd_wifi.asm

7

(01) Origin address of $4000
chosen because it will co-

exist with SuperBASIC
(02-05) The PGX signature occupies 8

bytes. When loaded into memory, these
bytes are not placed in memory, only our

program will (beginning at $4008).

(07-14) This virtual definition reserves the first 16 bytes of memory while
‘naming’ mmu_ctrl and io_ctrl, only the latter of which is used in this
program. On line 12, we define .word printptr, used by printmsg.

(15) As discussed
above, this single

line is expanded to
the full event

structure up to line
16 on the next page

12/2023-Full

①

③f②

The mouse struct, at will be
populated with data upon

occurrence of a DELTA event or a
CLICKS event. The upper case

constants are built at assemble time
from api.asm. A compare example
in context for a click event would be:

cmp #kernel.event.mouse.CLICKS

From a data hierarchy perspective,
mouse is within the overarching

event struct that we instantiated on
line (15), and clicks

 contains inner within. We
would reference this byte as:

lda event.mouse.clicks.inner

It contains the # of clicks detected
(single, double, or triple; 1, 2*, or 3

respectively)

①

③ f②

use example

For source, .lst, and binary of sak, see the Foenix Marketplace here… You’ll be pleased to see that mouse events have been added to
the code. One killer (undocumented) kernel feature: it auto-detects ‘handedness’ (pg. 9) on double-click. Gadget thinks of everything!

*

It could be said that nested structs
create hierarchies while unions (in
green) facilitate overlap. To quote
the 64tass manual (v1.59 r3120):

“Unions can be used for overlapping
data as the compile offset and

program counter remains the same on
each line. Therefore the length of a

union is the length of its longest item.”

Combined, these features provide
something between C language

structs and the dot notation used in
Python, Java, or C++. Powerful !!

; 64tass Turbo Assembler Macro V1.58.2974 listing file
; 64tass -I . -C -Wall -Wno-shadow -x --verbose-list -b -L standalonekeys.lst -o standalonekeys.bin standalonekeys.asm api.asm

; Wed Dec 06 18:55:20 2023
;Offset ;Hex ;Monitor ;Source

;****** Processing input file: standalonekeys.asm

00 .cpu "65c02"
01 * = $4000

02 >4000 50 47 58 .text "PGX" ; Signature
03 >4003 03 .byte $03 ; machine type
04 >4004 08 40 .word keys.cmd ; execution addr
05 >4006 00 00 .word 0 ; 3rd and 4th byte of starting addr not used on 8-bit systems

06 .dsection code

07 .virtual $0000 ; Zero page
08 >0000 mmu_ctrl .byte ?
09 >0001 io_ctrl .byte ?
10 >0002 reserved .fill 6
11 >0008 mmu .fill 8 ;merely (and merrily) reserves addresses. Aside
12 >0010 printptr .word ? ; from $00 and $01, $08..$0f are the most critical
13 .dsection dp
14 .endv

15 .4189 event .dstruct kernel.event.event_t
 >4189 type .byte ? ; Enum above
 >418a buf .byte ? ; page id or zero
 >418b ext .byte ? ; page id or zero
 .union

 .418c key .dstruct kernel.event.key_t
 >418c keyboard .byte ? ; Keyboard ID
 >418d raw .byte ? ; Raw key ID
 >418e ascii .byte ? ; ASCII value
 >418f flags .byte ? ; Flags (META)
 =$80 META = $80 ; Meta key; no associated ASCII value
 .ends

 .418c mouse .dstruct kernel.event.mouse_t
 .union

 .418c delta .dstruct kernel.event.m_delta_t
 >418c x .byte ?
 >418d y .byte ?
 >418e z .byte ?
 >418f buttons .byte ?
 .ends

 .418c clicks .dstruct kernel.event.m_clicks_t
 >418c inner .byte ?
 >418d middle .byte ?
 >418e outer .byte ?
 .ends
 .endu
 .ends

 .418c joystick .dstruct kernel.event.joystick_t
 >418c joy0 .byte ?
 >418d joy1 .byte ?
 .ends

 .418c udp .dstruct kernel.event.udp_t
 >418c token .byte ? ; TODO: break out into fields
 .ends

 .418c tcp .dstruct kernel.event.tcp_t
 >418c len .byte ? ; Raw packet length.
 .ends

 .418c file .dstruct kernel.event.file_t
 >418c stream .byte ?
 >418d cookie .byte ?

 .union
 .418e data .dstruct kernel.event.fs_data_t
 >418e requested .byte ? ; Requested number of bytes to read
 >418f read .byte ? ; Number of bytes actually read
 .ends

http://apps.emwhite.org/foenixmarketplace/

812/2023-Full

= MicroKernel Vectors

_joy calls print_hex for each of
the two joysticks (when either
triggers an event) then branches
back to the event loop (_loop)

_pressed exits upon <return>
and cleverly prints meta key
flags, then keypresses beginning
at screen location $c0f0.

The original “keys” program
leveraged display.asm to
write to the screen indirectly.

This was simplified to a static
location to reduce overhead.

Discussed on pg. 6
above, the kernel
clears the carry flag
when an event is
pending.

On line (31), the
event type is loaded
into the accumulator
then compared with
constants to branch
on events

 .418e wrote .dstruct kernel.event.fs_wrote_t
 >418e requested .byte ? ; Requested number of bytes to read
 >418f wrote .byte ? ; Number of bytes actually read
 .ends
 .endu
 .ends

 .418c directory .dstruct kernel.event.dir_t
 >418c stream .byte ?
 >418d cookie .byte ?
 .union

 .418e volume .dstruct kernel.event.dir_vol_t
 >418e len .byte ? ; Length of volname (in buf)
 >418f flags .byte ? ; block size, text encoding
 .ends

 .418e file .dstruct kernel.event.dir_file_t
 >418e len .byte ?
 >418f flags .byte ? ; block scale, text encoding, approx sz
 .ends

 .418e free .dstruct kernel.event.dir_free_t
 >418e flags .byte ? ; block scale, text encoding, approx sz
 .ends
 .endu
 .ends

 .418c timer .dstruct kernel.event.timer_t
 >418c value .byte ?
 >418d cookie .byte ?
 .ends
 .endu
 .ends

16 keys .namespace

17 .section code
18 .4008 a9 02 lda #$02 cmd lda #2
19 .400a 85 01 sta $01 sta io_ctrl
20 .400c 20 cc ff jsr $ffcc jsr kernel.Display.Reset

21 .400f a2 a1 ldx #$a1 ldx #<welcomemsg
22 .4011 a0 40 ldy #$40 ldy #>welcomemsg
23 .4013 20 80 40 jsr $4080 jsr printmsg

24 .4016 a9 89 lda #$89 lda #<event
25 .4018 85 f0 sta $f0 sta kernel.args.events+0
26 .401a a9 41 lda #$41 lda #>event
27 .401c 85 f1 sta $f1 sta kernel.args.events+1

28 .401e 20 0c ff jsr $ff0c _loop jsr kernel.Yield
29 .4021 20 00 ff jsr $ff00 jsr kernel.NextEvent
30 .4024 b0 f8 bcs $401e bcs _loop

31 .4026 ad 89 41 lda $4189 lda event.type
32 .4029 c9 08 cmp #$08 cmp #kernel.event.key.PRESSED
33 .402b f0 1e beq $404b beq _pressed
34 .402d c9 0a cmp #$0a cmp #kernel.event.key.RELEASED
35 .402f f0 16 beq $4047 beq _released
36 .4031 c9 04 cmp #$04 cmp #kernel.event.JOYSTICK
37 .4033 f0 02 beq $4037 beq _joy

38 .4035 80 e7 bra $401e bra _loop

39 .4037 a2 00 ldx #$00 _joy ldx #0
40 .4039 ad 8c 41 lda $418c lda event.joystick.joy0
41 .403c 20 66 40 jsr $4066 jsr print_hex
42 .403f ad 8d 41 lda $418d lda event.joystick.joy1
43 .4042 20 66 40 jsr $4066 jsr print_hex
44 .4045 80 d7 bra $401e bra _loop

45 .4047 a9 20 lda #$20 _released lda #' '
46 .4049 80 11 bra $405c bra _show

47 .404b ac 8e 41 ldy $418e _pressed ldy event.key.ascii
48 .404e c0 0d cpy #$0d cpy #13
49 .4050 f0 12 beq $4064 beq _done

50 .4052 a9 58 lda #$58 lda #'X'
51 .4054 2c 8f 41 bit $418f bit event.key.flags
52 .4057 30 03 bmi $405c bmi _show
53 .4059 ad 8e 41 lda $418e lda event.key.ascii
54 .405c ac 8d 41 ldy $418d _show ldy event.key.raw
55 .405f 99 f0 c0 sta $c0f0,y sta $c0f0,y
56 .4062 80 ba bra $401e bra _loop

9

57 .4064 18 clc _done clc
58 .4065 60 rts rts

59 .4066 48 pha print_hex pha
60 .4067 4a lsr a lsr a
61 .4068 4a lsr a lsr a
62 .4069 4a lsr a lsr a
63 .406a 4a lsr a lsr a
64 .406b 20 75 40 jsr $4075 jsr _digit
65 .406e 68 pla pla
66 .406f 29 0f and #$0f and #$0f
67 .4071 20 75 40 jsr $4075 jsr _digit
68 .4074 60 rts rts

69 .4075 5a phy _digit phy
70 .4076 a8 tay tay
71 .4077 b9 91 40 lda $4091,y lda digits,y
72 .407a 7a ply ply
73 .407b 9d 31 c1 sta $c131,x sta $c131,x
74 .407e e8 inx inx
75 .407f 60 rts rts

76 .4080 86 10 stx $10 printmsg stx printptr
77 .4082 84 11 sty $11 sty printptr+1
78 .4084 a0 00 ldy #$00 ldy #$00
79 .4086 b1 10 lda ($10),y printloop lda (printptr),y
80 .4088 f0 06 beq $4090 beq exitprint
81 .408a 99 00 c0 sta $c000,y sta $c000,y
82 .408d c8 iny iny
83 .408e 80 f6 bra $4086 bra printloop
84 .4090 60 rts exitprint rts

 >4091 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66
85 digits .text "0123456789abcdef"
 >40a1 54 68 69 73 20 70 72 6f 67 72 61 6d 20 73 68 6f
 >40b1 77 73 20 74 68 65 20 68 65 6c 64 20 73 74 61 74
 >40c1 75 73 20 6f 66 20 6b 65 79 73 2e 20 50 72 65 73
 >40d1 73 20 3c 45 4e 54 45 52 3e 20 74 6f 20 71 75 69
 >40e1 74 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >40f1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >4101 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >4111 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

86 welcomemsg .text "This program shows the held status of keys. Press <ENTER> to quit. "
87 .text " "
88 .text $a0," meta: ",$a1," ",$a0,$96," ascii & extended keys... ",$a0," f1-f8/12 “,$a1
89 .text. " ",$a0," joys “,$a1,$0
90 .send
91 .endn

Interpreting Events
Now that we are detecting events, what are we going to do with them? Before deciding, we need to understand the
circumstances that caused the kernel to inform us that a particular event has occurred. This primer will help.
JOYSTICK events are triggered each time a state change occurs, meaning, each time a button (or directional switch) is
detected, and each time the state changes due to release of the button or joystick back to center. You can exercise this
yourself with sak by moving a joystick in a particular direction or pressing a button, holding it, then releasing.
DELTA x and y events (mouse movement) measure velocity from a center of 0 either positive ($01, $02, $03 …
increasing) or negative ($ff, $fe, $fd …, decreasing). Down (y axis) and to the Right (x axis) are positive. The z axis
is triggered by the scroll wheel (if your mouse has one), and reads $ff when scrolled forward and $01 when scrolled
backwards, regardless of velocity. buttons returns bit values of bit 0 = inner; bit 1 = outer; bit 2 = center aka, byte values
of 1, 2, or 4. This byte returns to 0 when released, triggering an event for the action and another when there is no action.
Mouse CLICKS events are more complicated because they track single, double, and triple click. When actuated for either
of these three conditions, the stack waits ~0.5s to determine how many (clicks) have occurred on the inner, middle, or
outer button. At this point, a value of 1, 2, or 3 is placed into the appropriate register. Contrary to DELTA or JOYSTICK
events, there is no ‘unclick’ event sent for CLICKS. You are notified of the last compound click event, that's it.
The notion of inner and outer are relative to the handedness of the mouse. While righty is the default (with the inner being
the left button), all it takes is a double-click on the [then] outer button to reverse the orientation; doing so will turn your
mouse into a left-handed HID (human interface device). Double-click the left button to return to ‘righty’.
There is more to discuss on this topic, but we will have to save it for another time. It is highly recommended that you pull
the binary and source from the marketplace, try the .PGX, study the source code, and then embark on your own path.

12/2023-Full

>4121 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
>4131 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
>4141 a0 20 6d 65 74 61 3a 20 a1 20 20 a0 96 20 61 73
>4151 63 69 69 20 26 20 65 78 74 65 6e 64 65 64 20 6b
>4161 65 79 73 2e 2e 2e 20 20 20 20 20 20 20 20 20 20
>4171 20 a0 20 66 31 2d 66 38 2f 31 32 20 a1 20 20 a0
>4181 20 6a 6f 79 73 20 a1 00

This simple print routine is single
purpose and replaces the .mkstr
macro (part of display.asm).

Characters are stored, indexed by y,
beginning at the hard-coded $c000
address. The text message below is
nearly 3 full screen lines in length.

Exits

Byte 0 signature: ”PGX"
Byte 3 $03 CPU type
Byte 4 $00 $40 Destination addr.
Byte 6 $-- $-- (unused)

Byte 8- $20 $21 $12 (data)

Byte 0 signature: $F2, $56
Byte 2 size of program in 8k blocks
Byte 3 starting slot
Bytes 4-5 start address (to be exec’d)
Bytes 6-9 reserved
Bytes 10- zero-terminated program name

Byte x- (data)

F256 Binary Files and Headers
A quick look at the ins and outs of 3 types of binary files including .PGX and

the $F2, $56 auto-execute variety

On prior pages, we discussed the .PGX format but there are others to mention. Differences aside, most have two things in
common: a) somebody though it a good idea to define a format and b) it wasn’t just an idea; one or more people invested
effort to create a loader, editor, or attribute viewer. With sound design and some amount of good fortune, formats and
standards catch on; in rare cases, they form the basis of a solid ecosystem that contributes to make a good platform, great.

The most simple header I’m aware of, was the Commodore .PRG format. Kernal LOAD and SAVE vectors counted on it
to inform the loading of binary and BASIC programs, disk directories, and even app data (e.g. SpeedScript documents). It
did so with only two bytes of meta-data, representing the load address in low-byte/high-byte format. Unfortunately,
nothing within this thin spec identified the execution address, and if you are familiar with the C64 and its ancestors, you’ll
probably know that the characters ‘P’, ‘R’, ‘G’ are not part of the filename at all; they manifested from byte 0 of a file’s
directory entry, occupying a column in the ‘$’ output along with SEQ and REL. In the old days, if you didn’t know where
or how to load something, detective work was necessary. Proprietary loaders adorned nearly every multi-file program,
especially commercial titles. Thankfully, standards have evolved since the ‘80s and our lives are improved in this regard.
Foenix platforms do not have an 8.3 filename spec or a system extension registry. Extensions are merely a few courteous
characters at the end of a filename. In this one-pager, we will profile a few of these formats. Ultimately, the job is the
same; to load (one or sometimes, many) files into memory where they belong so a program or the user can use them.

None - these binaries are unstructured,
but common convention on 6502 platforms
has been to align the desired start
address to the reset vector ($fffc).

In some cases, developers have created
their own formats. We’ll point to a
few app specific use-cases below.

.PGX $F2, $56 auto-exec aka ‘KUP’ Generic binary

De
sc

rip
tio

n
By

te
 fo

rm
at

H
ow

 to
 lo

ad
 a

nd
 e

xe
cu

te
.
a
s
m

 d
ire

ct
iv

es

Upon load, data is placed in memory at
byte offset $08 (the header is processed,
but not stored to memory).
When the application ends (with an rts),
the program that initiated the load may
either resume control, or reset the system.
Here is the “from SuperBASIC” form,
discussed on pg. 3:

PGX files (see pg. 3) contain identifying
information and a load address and can
start a program composed of a single
segment. PGZ files are similar, but have
provisions for multiple segments, loaded
across memory (see links below).

* = $4000

.text "PGX"

.byte $03

.word keys.cmd

.word 0

Se
e

al
so https://wiki.c256foenix.com/index.php?

title=Executable_binary_file

Auto-exec KUP binaries, marked by
$F2, $56 (aka F256), in bytes 0 and 1 are
scanned for by the kernel at start-up.
The MicroKernel code that manages
startup is MMU ‘slot’ aware.

KUP = kernel-user-program

At detection (during boot or reset), x
number of blocks (byte 2), consecutive
from the signature block, are moved to slot
y (byte 3) and execution begins from the
low-byte/high-byte address in bytes 4 & 5.
Combined with the ability to flash blocks
to cartridge or onboard flash (via the F256
Uploader) and use the MicroKernel DOS
lsf command (see figure 4a), this
capability is of great use to developers and
users interested in customizing their
system startup and onboard toolset.

* = $4000

.text $f2,$56

.byte 1

.byte 2

.word keys.cmd

.word 0

.text "sak - standalone keys",$0

Not applicable*

Loosely, any file type may be called binary.
More commonly, the name refers to non-
ASCII data that is largely unprintable.
A char set ‘font’ file is an example of one,
as is machine code or sprite graphic data
loaded by SuperBASIC, noted below.

Absent identifying information indicating
how or where to load or execute, the parent
or calling program must load the data into
memory at a prescribed address. Within
SuperBASIC, this can be done as follows:
BLOAD "{filename}", {[$]addr}
… and if code, it can be executed using:
CALL {[$]addr}

There are several examples present in the
Foenix F256 Graphics Toolkit by Ernesto
Contreras (see link below).

https://github.com/ghackwrench/
F256_Jr_Kernel_DOS/blob/main/kernel/
README.md (see the “Startup” section)

1012/2023-Full

http://apps.emwhite.org/shared-files/770/?F256-
GraphicToolkit-11.zip&download=1
See line 3500 onwards in the Foenix Sprite
Editor “spreditjr.bas” for the BLOAD sprite
load code.
See line 3650 onwards in the Foenix Font Editor
“fontjr.bas” charset load / relocate code.

https://github.com/FoenixRetro/Documentation/
blob/main/f256/programming-file-formats.md

(applies to both)

see pg. 22 for a look at how the 65C02 CPU
(sans kernel) boots, the old fashioned way.

*

http://apps.emwhite.org/shared-files/770/?F256-GraphicToolkit-11.zip&download=1
http://apps.emwhite.org/shared-files/770/?F256-GraphicToolkit-11.zip&download=1
https://github.com/FoenixRetro/Documentation/blob/main/f256/programming-file-formats.md
https://github.com/FoenixRetro/Documentation/blob/main/f256/programming-file-formats.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://wiki.c256foenix.com/index.php?title=Executable_binary_file
https://wiki.c256foenix.com/index.php?title=Executable_binary_file

EMWhite: Thank you for taking the time to
discuss the platform and your contribution. I’m
excited by what I saw in one of your demos and
have been reading about the CoCo for some
time, including in your book. Up until VCF
Midwest this year, I had never met a CoCo or a
CoCo enthusiast in person. I now have
newfound respect for both.

If we could start at the beginning, what was your
first job in tech; maybe as a teenager?

Boisy Pitre: My first job in tech was with
Microware Systems Corporation, maker of
OS-9. This was in 1992. The company started
in 1977 and was past the 6809 phase of their
business when I joined. At the time, they were
heavily into the Motorola 68K and x86
platforms, and were looking at porting to the
Motorola PowerPC and other processors. The
MC68K version of OS-9 is still being marketed
and sold by the current owners of Microware.

EMW: What was your first experience with
computers in general; either at School or home?

BP: When I was 14, a friend of mine from
church had an older brother that had the
original CoCo and when the CoCo 2 came out,
he handed it down to my friend. This was
around 1983. Of course, we had an Atari VCS at
home, but this was my first real computer
experience.

A conversation with Boisy Pitre - CoCo historian and developer of
NitrOS-9 for the FNX6809 equipped F256 platform

EMW: Did your high school offer computer
based curriculum or machines for use?

BP: My High School had a Commodore PET in
the library that was not even functional. In my
senior year, I took a Computer Applications
course based on MS-DOS on “Leading Edge”
brand PC clones.

But having a CoCo at home by that time (since
1985), I learned to program on my own. And in
school, I joined FBLA (Future Business Leaders
of America) and participated in a Computer
Programming competition where I placed first
in my region. Then I moved up to the State
finals, and also placed first. I did not place in
the Nationals, but it was a great experience and
I knew at that point what I wanted to do
professionally.

EMW: Did you take CompSci in College?

BP: I did, I earned my Bachelors and Masters
degree in Computer Science and am currently
working on completing my PhD. It will be the
capstone of my career, once achieved.

EMW: Can you explain in layman’s terms what
NitrOS-9 is and how it came about?

BP: NitrOS-9 is a freely available version of the
Radio Shack version of OS-9 which a group of
folks deconstructed, fully commented, and made
available in source. Members of the project then
wrote cross-development tools on modern
systems to assemble the code.

1112/2023-Full

In issue #4 (December, 2022), we interviewed Gadget, developer of MicroKernel for the F256 and other
efforts. The interview touched on her early experience with the Tandy Color Computer (a.k.a. CoCo),
coding in Motorola 6809 assembly language, and its influence, which prepared her for a career of
embedded software development and led to a collaboration with Stefany on the design of the F256 MMU.
It did not take long for Stefany to take this one step further when she created a 6809 compatible core on
FPGA in a 40-pin package that when paired with a custom version of VICKY, gave Foenix developers
the opportunity to write Motorola 6809 assembly language while enjoying all of the other F256 graphic,
audio, and connectivity niceties. Issue #4 also had a ‘sneak peek’ of the FNX6809 (reprinted on pg. 14).
This month, we are closing the loop with a conversation with Boisy Pitre; author, developer, and primary
contributor to the NitrOS-9 project. When Boisy caught wind of the availability of the FNX6809 option
for the F256, he jumped on board and has been working tirelessly to port NitroOS-9 to the platform
(Level 2 is ready for user test now!!).
This is the first ‘real’ operating system for a Foenix computer. Unix fans will recognize similarities
between their beloved OS and the features that OS-9 brings to the table; CoCo and 6809 fans will
likewise be attracted to the F256 platform for its speed and its modern features. There is alot to like…

But the original NitrOS-9 got its start as a
platform for the 6309 CPU (a souped up version
of the 6809). It was developed by CoCo
enthusiasts as a closed-source commercial
product and sold in the early 1990s.

Sometime after 2000, the 6809 project began in
similar fashion to the 6309 effort, by
disassembling the original code.

EMW: How many people actively contribute?

BP: About 6-8 people are still involved and
actively maintaining it. (here is the GitHub link)
Do you have the FNX6809?

EMW: I do, though I haven’t tried it, yet; I’ve
been really busy with my stock 65C02 based Jr.,
which is where I do all of my development and
Newsletter work. There is so much to do and
I’ve got so much in motion, but the short answer
is, I have three F256 machines and the silver
cased Jr. (of course) will run NitrOS-9 at some
point. My FNX6809 is still in the packaging
Stefany shipped it in. I only took it out once, to
show it at VCF East in April.

EMW: Earlier, you mentioned you taught yourself
BASIC. What was your first experience
programming; after BASIC, that is?

BP: I started learning the C Language in the ‘80s,
then C++ in college. From there, I moved to
Objective-C on the Apple Platform. The next
logical step was Apple’s Swift.

EMW: As far as your day job is concerned, do
you code professionally at the moment?

BP: I’m a professional writer and developer,
putting together sample projects to teach other
developers how to leverage different
frameworks, so that’s a “yes”. But I continue to
develop and contribute to personal projects such
as the DriveWire server which runs on Unix,
Mac, and Windows platforms.

EMW: What is DriveWire?

BP: In a nutshell, DriveWire lets NitrOS-9
platforms share disk, network resources, serial
ports, and other devices with modern computers
over a serial link and this now includes the F256
platform, when running NitrOS-9.

EMW: How fast is the ‘last-mile’ link to the
Foenix machine?

BP: 230,400 bps.

EMW: I know you’ve written a few books as
well; we’ll get to them in a moment; but here’s a
tough question for you: Day job aside, how do
you rank your interests, considering your time
appears to be a split multiple ways (vintage
historian, software engineer, freelance
technology author)?

BP: I consider myself a software engineer first, a
writer second, and a historian third. I’ve come
to enjoy the historian role; I find it neglected in
computer science.

EMW: And I either read somewhere, or heard
you speak of your personal collection of vintage
CoCo gear. What are the highlights?

BP: I have about 30 CoCo machines including a
Deluxe CoCo which is an unreleased model. I
also have a CoCo 4 mockup case, which is one of
a kind, and the DIY kit that Tandy sold, which is
based on the CoCo 2. Kits from those days
required soldering of through-hole components.
Finally, I’ve got the original four CoCo 3
prototypes that Microware used to develop
OS-9; two are PAL and two are NTSC.

EMW: I might have to introduce you to
Commodoreman (Chris) on the Discord forum.
I think he now has some competition, from a
vintage collection point of view!

Editor’s note: Boisy and I did not talk about it,
but I’m aware of his Swift for Beginners book (see
pic and link, below). Published in
2014 by Peachpit Press, the second
edition is still available on Amazon
and seems to be well received (4.3 /
5 on Goodreads with 27 ratings,
and another 44 on Amazon’s site).
Personally, the last development I did on Mac
was when it was called a “Macintosh”, and
Lightspeed C was the language of choice. At
the time, I remember the enigma known as the
resource fork and how lost I was. In reading
Boisy’s book description here, I’m thinking a
restart might be in order. Have a look.

1212/2023-Full

https://www.peachpit.com/store/swift-for-beginners-develop-and-design-9780134289809
https://github.com/nitros9project/nitros9
https://github.com/boisy/DriveWire

EMW: Ok, here comes a few random questions:
If you have a second hobby or passion, what is it?

BP: In addition to restoring old CoCo systems,
I’ve had a few projects restoring commercial
Namco Arcade games, specifically, PacMan and
Super-PacMan. I like it as it combines a number
of interests including electronics but also
woodworking and general painting and
restoration.

EMW: Do you play any musical instruments or
have any hidden talents.

BP: I do. I play Cajun music, which is local to
South Louisana and specifically, I play fiddle,
accordion, and guitar. I play in jam sessions with
friends all the time. Many of them are craftsman
and make their own instruments.

EMW: Were you exposed to any interesting
operating systems or technology early in your
career that you found influential?

BP: I was first exposed to a port of Unix called
ESIX on an Intel 386 platform in college. A
professor had it running.

By the time I got to MicroWare, every developer
had a Sun 3/80 on their desk running SunOS v3.
I’d like to pick one of those up, someday.

EMW: Can you give me the NitrOS-9 elevator
pitch; what are 3 killer features of the platform
that qualify it as a real operating system.

BP: Well, it supports priority based, preemptive
multitasking with aging through a fairly
sophisticated scheduler. It adopts the Unix mode
of unified I/O meaning it can treat devices and
files similarly such that they feel the same to an
application. Also, it supports kernel modules that
can be loaded at boot or at run-time (via the
command line) dynamically. This provides great
flexibility such that you can have one build that is
full featured with all of the modules resident, and
another that is light weight, running only from
memory with minimal drivers.

EMW: I should share that my personal favorite
vintage system is my NeXT Cube for many of the
same reasons. It has a real operating system; so I
see the appeal and benefit. Despite the 68040 in
my NeXT, it's dog slow. NitrOS-9, since it is
character based is probably a different story.

EMW: What is left to do on the F256? Is Level 2
the end? What differentiates the Levels?

BP: Well, Level 3 was more of an experimental
OS that somebody constructed. It utilized a
different way of organizing memory, but it’s not
something I’m looking to tackle. Level 1 is
restricted to 64K including the OS and all
processes. Level 2 allows up to 64K for the
operating system and then another 64K per
process upwards of 2MB in total, which is plenty
for the F256, since it has of 512K of RAM.

At the moment, I’m working on BASIC09, which
is full featured and feels somewhat like what I’ve
seen from SuperBASIC; they are both
procedural. I’m not sure how far I’ll get but I’m
going for parity for features like DMA, which
SuperBASIC front ends it with MEMCOPY.

There are still some questions to be resolved
about the best way to distribute the environment
and I’ve been talking to Stefany about whether a
FLASH cartridge and an SD package would be a
good turnkey arrangement. But it's ready for use
now if anybody wants to grab it and build it.

EMW: How difficult was the port for the F256
platform, and how long did it take you?

BP: NitrOS-9 was designed to be portable, so
the work was isolated. I needed code to talk to
the hardware, specifically the MMU, RAM,
FLASH, the SD interface, the real-time-clock,
screen, keyboard, and serial port.

Stefany was very helpful in moving the memory
map around with a custom FPGA build, and this
was necessary for the Level 2 port, in terms of
how the hardware was exposed.

From a code base size, the total of all sources and
examples in the GitHub repo is staggering. I
used a quick xargs grep to remove lines
beginning with ‘*’, ‘;’, or ‘#’ and the total
returned was 670,279 lines. Mind you, this is for
all nine platforms.

EMW: How much time did it take you to get to
this point?

BP: Work started in September in earnest and
within 2 months, Level 1 was running. Today,
Level 2 is stable and live. You can download it
now.

1312/2023-Full

EMW: How much effort or expertise is involved
in getting it built and running?

BP: A set of instructions has been pushed to the
new Wiki (as of this week). Otherwise, all of the
tools required to build the platform are
maintained in the GitHub.

EMW: Amazing. I can’t wait to get onboard. My
next few months are booked but I’ll look forward
this and learning more about DriveWire as well.

EMW: I know you are still pushing, but looking
back at your career, the projects you’ve
participated in, and your own personal
development, are you surprised by the trajectory
of your career and achievements?

BP: When I was in high school, a teacher asked
us to write down where we thought we would be
in 10 or 20 years. I’ve been thinking about that.

If I could go back to my 17 year old self and look
forward, I think I not only met, but exceeded
what I had written down for that exercise.

EMW: I’ve had similar thoughts but #1 is feeling
as if I was born at the right time in history, which
is to say, at the advent of the microprocessor.

I also reflect back across my career and
remember the first time I thought to myself:
“I can’t believe I’m getting paid for this”.

Boisy and I spoke some more and I didn’t capture
it all, but you get the idea. His work on our
platform is significant and there is alot of history
and technology to jump into. I’ll have more on this
topic in a few months. I can’t thank Boisy enough
for his time and effort.

In addition to Boisy’s interest and experience with
OS-9 and the CoCo platform in general, he also
co-authored a book on the subject, available on
Amazon and elsewhere.
“CoCo: The Colorful History of Tandy’s Underdog
Computer” is ~190 pages of dense information
and considers technical details of the hardware,
software, operating code intricacies, in addition to
the genesis of the Tandy products, personalities
involved, industry lore, clones, and more.
Any fan of vintage or retro will look at the index
and want a copy. I bought mine following VCF
Midwest, after mentioning Boisy’s name to a
CoCo enthusiast and learning of it.

One year ago this week, as published in Foenix Rising issue #4

At the end of an interview with Gadget (on page 9 of Issue #4), I
wrote a bit more about her involvement with the CoCo platform
and took a tongue-in-cheek look at some retro adverts including

this one with Isaac Asimov entitled “Fantastic News from…”

On page 25, I had some spare room and asked Stefany for a
few “spy photos” that I could fill some space with. She offered
pics of her [then] prototype FNX6809. At the time, she had just

coded the mock-up screen shot that you see in green.

1412/2023-Full

https://www.amazon.com/gp/product/B00HRGWNXC/
https://wiki.f256foenix.com/index.php?title=OS-9

Humble Beginnings in the ‘70s
Let’s go back to some the oldest home platform
hardware created for 8-bit gaming, the ATARI 2600. By
looking at its library of games you would believe that it
had some half decent graphical capabilities, but even
though a lot was accomplished with it, you should
know that its hardware only supported displaying five
interactive objects at any one time: two "player" sprites,
two "missiles” and one "ball." (you can almost imagine
how the original designers’ specs were inspired by
Pong).

So, the question is: how the ATARI programmers
created half decent graphics with these limitations?
Well… ATARI 2600 programmers were a sneaky bunch
and implemented a lot of tricks and hacks, some of
these were rudimentary “tile-like” capabilities with
their limited hardware support.

To create these tile-style graphics with the hardware
restrictions, the programmers designed their playfield
carefully, and drew it using multiple instances of one of
their available elements. This approach needed careful
planning of the correct position of each element, either
the missiles and/or ball. Once the electron beam had
drawn it, the program could re-use this missile or ball
element to draw it again, at a different position by
shifting its horizontal or vertical position and redrawing
it. Since the previous (missile or ball) image had
already been drawn on the screen, the original one

Illustrating 8-bit dreams…
Article and accompanying SuperBASIC code written by Ernesto Contreras

would not disappear until the electron gun came back
around to redraw the screen. By doing this along with a
lot of planning, and careful timing, programmers could
create repetitive images that filled the screen.

Use of these techniques allowed designers to create
scenes on the VCS that were significantly more detailed
than the hardware maker had ever imagined. Consider
the jungle scene from Pitfall. The bottom part of the
trees is drawn with missiles; they are used as primitive
tiles creating the mirrored curves below the treetops. To
complement the illusion, the details of the tree's
branches are drawn using “static” sprites.

And if you are wondering, the iconic swinging vine was
created with multiple “ball” elements, with its position
shifted slightly on the x-axis as needed for each
subsequent scan line to give the illusion of a swinging
movement.

If you want to know more on how the ATARI 2600
accomplished some of its tricks you can read the book
“Racing the Beam: The Atari Video Computer System.”

Moving Up in the ‘80s
Coin-ops by the mid ‘80s had left the graphics of their
‘70s counterparts in the dust. Image technologies had
evolved rapidly, allowing more engaging gameplay,
liberating games from the boundaries of one screen.
Now the playfield was scrollable and ready to reveal
more colorful detailed terrain in all directions, which
blew our minds away!

1512/2023-Full

Contributing developer Ernesto Contreras is the author of the original “Foenix Sprite Editor”, developed
in BASIC816 for the Foenix C256U+ platform. He subsequently retooled and enhanced its capabilities,
and ported the application to SuperBASIC on the F256 platform. Combined with his “Font” (aka
character set) Editor and a full featured Tile Map Editor, the most recent versions of each have been
packaged and released as the “Foenix F256 Graphics Toolkit”.
Ernesto’s work is unique because it is often graphical or musical in nature and tool focused, but also,
because it is complete. Features are fully implemented, and apps often include documentation which acts
as a user guide and a reference guide, documenting the byte format layout for data files his app creates.

Figure 15a - ATARI Pong

Figure 15b - Activison’s Pitfall

But how was all this graphic wizardry accomplished?
How could games be so colorful, detailed and moving so
fast with the limited resources of 8-bit machines of the
era?

We were all aware of Bitmap Graphics since the 1970s,
but moving bitmap graphics was prohibitively expensive
in computational resources since it involved too many
operations on too much data.

Well, the answer is simple. Hardware evolved using the
‘70s trick of reusing an element many times, tiles now
were formerly supported in hardware as reusable graphic
components that, along with a tile map, could direct how
to arrange graphic objects onscreen.

Many of the Classic video games in the ‘80s benefitted
from tiles, helping to push the envelope in graphical
terms throughout the decade without taxing too much the
CPUs of the era.

“Tile maps are a very popular technique in 2D game
development, consisting of building the game world or
level map out of small, regular-shaped images called
tiles. This results in performance and memory usage
gains — big image files containing entire level maps
are not needed, as they are constructed by small images
or image fragments multiple times.”

More Improvements: Multiple Tile Layers
By the mid ‘80s, additional tile layer support in
hardware allowed game companies to unlock not only
more detailed graphics, but additional effects.

For example, in Rastan Saga, two tile layers are used to
create a parallax effect to simulate depth. A tile layer
with the mountains and statues in the background
moves at a slower pace than the front tile layer, which
contains the playfield that the player interacts with.

A very nice 3D effect for the era, indeed!

Moving slightly ahead, by the middle of the ‘80s,
improvements in CPU speed and addressable memory
allowed more tile layers to be implemented.

More Layers would not only improve visuals such as
improving the 3D parallax effects with more tile layers
moving at different speeds, but would also allow game
designers to expand the actual game experience by
permitting the player to handle the action in different
planes, just as demonstrated in Shinobi or Shadow
Dancer (above), where the player must alternate
moving between the forward and back planes to attack
all enemies and reach all goals needed to advance to the
next stage.

Three tile layers are used for this effect; one with the
background (again moving slowly) another in the
middle (seen above as the fence that separates the back
and forward planes), and a foreground tile layer for the
forward plane.

1612/2023-Full

Figure 16a - ATARI Gauntlet 2

Figure 16b - Capcom’s Commando

Figure 16b - Rastan Saga

Figure 16c - Shadow Dancer

Source: https://developer.mozilla.org/en-US/docs/Games/Techniques/Tilemaps

https://developer.mozilla.org/en-US/docs/Games/Techniques/Tilemaps

Replicating The Graphical Identity of ‘80s video
games on the Foenix F256 platform

After this brief tour on graphic capabilities of arcades in
the ‘80s, we now have some basis to discuss the F256
graphic capabilities. Stephany (“The Mistress of all
Villainy”) surely has her own say about how or why she
selected the features she included, but I believe that she
wanted to replicate some period correct features.

Tiny Vicky has more capabili3es, but we’ll concentrate
only on these, since they are relevant for this ar3cle

This feature set would make it possible to implement,
almost perfectly, the latest game example “Shadow
Dancer”, allowing 3 tile map planes with up to 1024
colors on screen (ok, the arcade has 4096 colors but 1024
is not bad!) with enough sprites configurable to allow the
player and enemies to move between the back and
forward plane along with bullets and ninja stars flying
around.

A better comparison, more suitable for arcade
enthusiasts, would be that the F256’s graphics
capabilities are comparable to that of the two SEGA
platforms listed below (along with a list of the arcade
hits of each platform, to provide more context). These
examples cover the period from 1987-1992.

SEGA system 16B: System 16 - Sega System 16B
Hardware (Sega))

VIDEO RESOLUTION : 320 X 224
COLORS : 4096
BOARD COMPOSITION : MOTHER BOARD + ROM BOARD
HARDWARE FEATURES : 128 SPRITES ON SCREEN AT ONE TIME, 2 TILE LAYERS, 1
TEXT LAYER, 1 SPRITE LAYER WITH HARDWARE SPRITE ZOOMING, TRANSLUCENT
SHADOWS
EXAMPLE ARCADE HITS: ALIEN SYNDROME, ALTERED BEAST, E-SWAT, GOLDEN
AXE, SHINOBI

SEGA system 18: System 16 - Sega System 18 Hardware
(Sega)

VIDEO RESOLUTION : 320 X 224
COLORS : 4096
BOARD COMPOSITION : MAIN BOARD + ROM BOARD
HARDWARE FEATURES : 128 SPRITES ON SCREEN AT ONE TIME, 4 TILE LAYERS, 1
TEXT LAYER, 1 SPRITE LAYER WITH HARDWARE SPRITE ZOOMING, TRANSLUCENT
SHADOWS
EXAMPLE ARCADE HITS: ALIEN STORM, MICHAEL JACKSON'S MOONWALKER,
SHADOW DANCER

Hardware sprite ‘zooming’ and translucent shadows are
not supported by Tiny Vicky (The core graphics engine
of the F256) today. But I don’t lose hope that some of
these features will be supported on Vicky III, currently
“in development” for the Foenix GENX, which, by the
way, will support SEGA’s choice of the Motorola’s
680XX family CPUs used on System 16 / System 18.

Art on the F256
Before we start manipulating memory registers to
enable graphic layers, color palettes, tile maps and
scrolling, we need to address a small logistics problem:

The F256 doesn’t have a full-fledged paint program to
produce graphics (yet). And chances are, you have the
graphics that you want to use to build your tile map on a
PC or Mac. The challenge will be getting those
graphics into the F256.

To address this problem, I’ll discuss two matters in the
following sections:

1. How to turn your source image into an 8-bit indexed
Windows Bitmap with the help of GIMP

2. Decoding this bitmap file with a SuperBASIC
program in the F256 and saving the image and
palette as binary files

1712/2023-Full

Color Four 256 Indexed color palePes
Selectable per each Ule in Tile Map or per bitmap plane,
allowing up to 1024 colors on screen.

3
Graphical
Layers

Up to three simultaneous stacked graphical
layers
Selectable between any combinaUon of 3 Ule layers or 2
bitmaps

Bitmap
Planes

Up to 2 bitmap planes at either 320x240 at
60Hz or 320x200 at 70Hz
Important: All other screen elements are adjusted to
selected resoluUon/refresh rate

Tile Sets Up to eight 256 Tile Sets, supporUng either
8x8 Ules or 16x16 Ules
Tile size configurable per each Tile Set/Tile Map

Tile Maps Up to three Tile Maps
Maximum size of each Ule map is 256x256 Ules

Smooth
Scrolling

Scrollable Tile Maps
With Independent scrollable speed & direcUon per Ule
map

Sprites Up to 64 sprites* (size selectable between
32x32, 24x24, 16x16 or 8x8) supported at
once per scanline, configurable to be below or
on top of any layer
*Sprites are mulUplexable so the total amount on screen
can be easily doubled or tripled!

Text 1 Text Layer above all other layers
8x8 Font size with a few opUons for different number of
screen rows/columns

F256 Graphic Capabilities
(Tiny Vicky – FPGA graphics engine)

*

http://system16.com/hardware.php?id=701
http://system16.com/hardware.php?id=701
http://system16.com/hardware.php?id=702
http://system16.com/hardware.php?id=702

Preparing the Image
To turn the image into a suitable bitmap we are going to
be using the program “Gimp”, since it’s a powerful
Image Editor that works on Windows, Linux, and Mac
platforms, and best of all, it’s free!
• Download Windows & Linux Gimp versions from

GIMP - Downloads … or
• Download the MAC version from the developer’s

version GIMP - Development Downloads
Once Installed, launch Gimp and follow these
instructions:
1. Open or Create a source image for your tiles in Gimp.

2. The obvious choice would be to make the image
256x256 pixels (16x16 tiles), but the Jr resolution is
320x240, so the y size won’t be enough to fit in one
screen!

3. An alternate size that would fit in one screen is
272x240 (17x15 tiles); you would need to create or
rearrange your tiles in such a file.

4. This size is ideal for use with the Tile Editor from the
F256 Graphic Toolkit since it allows up to 255 tiles
out of 256. The Tile Editor always forces tile 0 as a
blank tile and loads all tiles into memory from tile 1
to 255.

5. Optional Step - Configure Grid | Snap to Grid
Select the following
options from the
Menu: Image |
Configure Grid
• On the Dialog that

appears adjust
grid to 16x16 or
8x8 pixels.

• To show the Grid,
select the
following Menu
Items: View | Show Grid

• Having the grid helps if you
are creating a tile set from
scratch to dimension your
images properly.

• If you are rearranging your
tiles in a different size image

(as suggested on step 1), you’ll benefit from
enabling “Snap-to-Grid”, this way Gimp ensures
that when you are copying & pasting images they
are always aligned with the Grid. Do this with the
following menu items View | Snap-to-Grid.

6. Convert the Image to Indexed 8-bit color by using
the following Menu Options: Image | Mode |
Indexed.
• On the dialog box select the following options:
• Generate Optimum palette.
• Maximum number of colors 255

7. Save the Indexed Bitmap file by using the following
Menu Items: File | Export As…
• Remove the current extension of the file and

change it to .bmp
• A message will appear informing that “Cannot

export indexed image with transparency in BMP
format – alpha channel will be ignored.”

• Don’t mind the warning and click on “OK”.
• The file will be created correctly.

8. Optional Step - To view the
indexed file palette generated,
select the following Menu
Options: Windows | Dockable
Dialogs | Color Map
• On the left side, the palette will appear
• You can alt-click on any color and select

“rearrange color map” to show all colors and
rearrange them using drag-and-drop. Use this to
make sure your transparent color is color #0

Understanding & Importing the Bitmap File
A bitmap file structure is simple enough to understand
so that a simple program (even in BASIC) from an 8-bit
computer can read it, and well, learning a bit more
about bitmaps won’t hurt!
With that settled, let’s discuss the structure of the BMP
file: First, a BMP file incorporates two headers:

A 14 byte BITMAPFILEHEADER that specifies the type
of bitmap file, the size of the file, and the position
(offset) in the file where the pixel data begins.

A second header, known in general as a DIB header,
supplies technical information needed to render the
image, such as bits-per-pixel, image height and width in
pixels, and other exotic data such as compression
method and halftoning algorithms (when applicable).
There used to be different DIB headers for Windows
and OS/2, but now only Windows remains.

1812/2023-Full

The following 3 1/2 pages include file header formats
and SuperBASIC code with commentary.

A full version of Ernesto’s code (pg. 20) can be
downloaded from the Foenix Marketplace at:

http://apps.emwhite.org/foenixmarketplace/

https://www.gimp.org/downloads/
https://www.gimp.org/downloads/devel/

Bitmap File Header

Windows Bitmaps are nowadays the only BMP format used; OS/2 was the other OS using bitmaps but since it’s no
longer used, we will focus on the Windows version of the DIB header.

Windows DIB Header

Compression method parameters and halftoning will be omitted for simplicity since we won’t be using compressed
bitmaps and halftoning was only used for black and white images.
Believe it or not, the only relevant fields for decoding a Windows Indexed Bitmap file are the those shaded in grey in
both tables, as we will demonstrate with the code in the next section.

1912/2023-Full

Offset (hex) Offset
(dec)

Size
(bytes) Purpose

0E 14 4 the size of this header, in bytes

12 18 4 the bitmap width in pixels (signed integer)

16 22 4 the bitmap height in pixels (signed integer)

1A 26 2 the number of color planes (must be 1)

1C 28 2 the number of bits per pixel, which is the color depth of the image. Typical values
are 1, 4, 8, 16, 24 and 32.

1E 30 4 the compression method being used. See the next table for a list of possible values

22 34 4 the image size. This is the size of the raw bitmap data; a dummy 0 can be given for
BI_RGB bitmaps.

26 38 4 the horizontal resoluOon of the image. (pixel per metre, signed integer)

2A 42 4 the verOcal resoluOon of the image. (pixel per metre, signed integer)

2E 46 4 the number of colors in the color palePe, or 0 to default to 2n

32 50 4 the number of important colors used, or 0 when every color is important;
generally ignored

*

Offset
hex

Offset
Dec Field Size Purpose

00 0 2 bytes The header field used to idenUfy the BMP and DIB file is 0x42 0x4D in hexadecimal,
contains BM in ASCII when the bitmap is generated in Windows.

02 2 4 bytes The size of the BMP file in bytes

06 6 2 bytes Reserved - actual value depends on the applicaUon that creates the image, if created
manually can be 0

08 8 2 bytes Reserved - actual value depends on the applicaUon that creates the image, if created
manually can be 0

0A 10 4 bytes The offset, i.e., starUng address, of the byte where the bitmap image begins (pixel array
data)

2012/2023-Full

Finally, Some Code (NEW)!

Good things come to those who wait, so here it is the code to import an indexed bitmap (up to 320x240 in size)
10 dword=alloc(4):pokew dword,0
20 cls :bitmap on :bitmap clear 0
30 input "bitmap filename (.bmp will be added):";a$
40 print "Loading bitmap..."
50 try bload a$+".bmp",$30000 to ec
60 if ec<>0 then cls :print "Error: File does not exist!":end
70 wpeek($3000E):hl=dwval:rem "DIB Header length"
75 wpeek($30012):xs=dwval:rem "X size"
80 wpeek($30016):ys=dwval:rem "Y size"
85 wpeek($3001C):bits=dwval:rem "Color Bits"
90 wpeek($3000A):rem "Offset to Pixel data start"
95 print "bitmap size x:";xs,"y:";ys,bits;" bit color"
100 orig=$30000+dwval:dest=$10000
110 for y=ys-1 downto 0
120 memcopy orig,xs to dest+(y*320)
130 orig=orig+xs
140 next
145 if option$<>"m"
150 ?1=1
160 for a=0 to 255
165 wpeek($3000E+hl+(a*4))
170 poke $D000+(a*4),peek(dword):poke $D001+(a*4),peek(dword+1)
175 poke $D002+(a*4),peek(dword+2)
180 next
185 bitmap off
190 ?1=1:for c=0 to 1023:?($7800+c)=?($D000+c):next :?1=0
195 b$=a$+".pal":print "."
197 print "saving palette.. please wait.."
200 try bsave b$,$7800,1024 to ec
210 if ec<>0
220 print "Palette Save error, check device or media":end
225 else
227 print "Palette saved as ";b$
230 endif
240 endif
245 b$=a$+".fbmp"
247 print "saving bitmap (320x240) please wait this takes a while..."
250 try bsave b$,$10000,320*240 to ec
260 if ec<>0
270 print "Bitmap Save error, check device or media":end
275 else
276 print "Bitmap saved as ";b$
280 endif
290 ?1=0
300 end
10100 proc wpeek(a)
10110 memcopy a,4 to dword
10120 dwval=peekw(dword)
10130 endproc

Let’s analyze a few lines from the program:

Line 50 loads the image at $30000, we have a nice chunk of memory from $30000-$7FFFF which is not used in
SuperBASIC (that’s plenty of memory to load bitmaps!)

In lines 70-90 we get the double word values at offsets $0E, $12, $16 and $1C which correspond to the shaded offsets in
the WINDOWS DIB HEADER.

Finally on line 90 we get a double word (which corresponds to an address offset) at which the pixel data begins as
marked on the shaded entry in the BITMAP FILE HEADER, this address is stored in variable dwval.
NOTE: wpeek is not a SuperBASIC keyword, but rather a Procedure that gets bytes from memory addresses outside
the first 64k of memory

In lines 100-140 we copy the bitmap data to the BITMAP screen area in SuperBASIC ($10000) using the DMA via the
memcopy function in SuperBASIC; you will notice that we go backwards starting by the bottom line and going up,
since bitmaps are stored upside down in bitmap files.

On Indexed bitmap files, the palette data resides after the DIB header data, so we use lines 150-180 to copy the palette
data from the appropriate area (considering the DIB header length, since different programs produce a longer or shorter
header!) into I/O page 1.

Lines 185 turns off the image (to help the user view text messages either confirming the operation or reporting errors)

Line 190 deserves its own explanation since it manually copies the values from I/O page 1 corresponding to the palette to
an area ($7800) at the end of SuperBASIC reserved memory for programs and then BSAVES the palette from that area.
This is done this way since you can’t BSAVE directly from the memory in the I/O Pages.

2112/2023-Full

50 try bload a$+".bmp",$30000 to ec

70 wpeek($3000E):hl=dwval:rem "DIB Header length"
75 wpeek($30012):xs=dwval:rem "X size"
80 wpeek($30016):ys=dwval:rem "Y size"
85 wpeek($3001C):bits=dwval:rem "Color Bits"
90 wpeek($3000A):rem "Offset to Pixel data start"

90 wpeek($3000A):rem "Offset to Pixel data start"

100 orig=$30000+dwval:dest=$10000
110 for y=ys-1 downto 0
120 memcopy orig,xs to dest+(y*320)
130 orig=orig+xs
140 next

150 ?1=1
160 for a=0 to 255
165 wpeek($3000E+hl+(a*4))
170 poke $D000+(a*4),peek(dword):poke $D001+(a*4),peek(dword+1)
175 poke $D002+(a*4),peek(dword+2)
180 next

185 bitmap off

190 ?1=1:for c=0 to 1023:?($7800+c)=?($D000+c):next :?1=0

Lines 195-230 save the palette file using the same name of the Bitmap file but adding a .PAL extension. Text messages
appropriate to the success or failure of the operation are displayed.

Lines 240-300 save the Pixel data of the Bitmap with a .FBMP extension.

Regardless of the original bitmap size, the full screen 320x240 is saved so that the user can just use the following
commands to load it from SuperBASIC:

bitmap on
bitmap clear 0
bload “FILENAME.FBMP”, $10000

This article got a bit long, so we’ll stop here. Next time, we’ll address how to load the palette and slice this bitmap into
tiles. Finally, we explain how to use the layering system, select tile layers, and play with tile maps to create a multilayer
graphics scene worthy of a 1990 arcade.

2212/2023-Full

195 b$=a$+".pal":print "."
197 print "saving palette.. please wait.."
200 try bsave b$,$7800,1024 to ec
210 if ec<>0
220 print "Palette Save error, check device or media":end
225 else
227 print "Palette saved as ";b$
230 endif

245 b$=a$+".fbmp"
247 print "saving bitmap (320x240) please wait this takes a while..."
250 try bsave b$,$10000,320*240 to ec
260 if ec<>0
270 print "Bitmap Save error, check device or media":end
275 else
276 print "Bitmap saved as ";b$
280 endif
290 ?1=0
300 end

What happens when a 65C02 CPU is reset ?

Booting a 65C02 computer requires coordination
between control lines, clock, and memory, but how
does the CPU know what code to run?

A look at the WDC spec sheet
unravels this mystery. The
short answer is the low-byte/
high-byte address, accessible
when address lines select
$FFFC then $FFFD, gets to run.

On the F256, the story is a bit
more complicated because the platform has a MMU
primed from the VICKY FPGA which dictates which
bank of memory aligns to slot 7 ($e000-$ffff).
And depending on DIP switches (and if a Jr., the
boot mode jumper), the system may boot from RAM

via code that landed through the USB DEBUG
port. Under normal conditions, FLASH contains
MicroKernel which says, “I’ll take it from here…”.

The greatest YouTube video on the subject was
produced by Ben Eater. You can see him exercise
his breadboard CPU while ‘sniffing’ data and
address lines. The entire video is ~27 minutes
long, but click this link, to be taken to the
punchline and within 3 minutes, it will all be clear.

https://youtu.be/LnzuMJLZRdU?si=d5nKlFtRvT9DMV12&t=1134
https://www.westerndesigncenter.com/wdc/documentation/w65c02s.pdf

2312/2023-Full

nanoEdit ‘data’ mode preview
 A viewer and editor for binary files. Use it for header manipulation or

 interrogation & machine language snooping

not for file copy or to remain open for other uses, but
so he could assign ASCII values 128-255 for inline
printer formatting tokens, or for output to disk.
Since we had no desire to support printing, we merely
changed the behavior for one special character (end-
of-paragraph) and defeated two display formatting
routines, and data mode was born. (see “data editing
model” for more on this topic).
The summary is, this use case is realized no
differently than in the linked video, it just looks
different: a file is opened, optionally edited, then
saved.
Having said this, nanoEdit offers enhancements. Our
file save function allows writing to an alternate
device (SpeedScript only supported [D]isk drive 8 or
[T]ape). For an append use case (as demonstrated in
the video), we can add a second file at the cursor
position as well. But unlike SpeedScript’s handling,
nanoEdit will not disregard the remainder of the
existing file, unless you direct it to; INS / OVR mode
is obeyed, the latter of which adopts the default
posture, else, files are inserted at the cursor position.

2. Data patch - let’s say I had the need to replace text
embedded within a binary structure with alternate
values. Say… well, I don't know… grasping at
straws here… oh… Let’s say I load the file lk.pgZ
and replace every occurrence of “Micah Bly” with
“Michael W”. Who’s going to miss a few characters?
In all seriousness, standard editing features work
within data mode including search and replace for
printable text. There are a few added features as
well, such as the ability to enter a hex value at the
cursor position or to hunt for an n byte long binary
value (expressed in multi-byte hex). Handy.

3. ‘Code’ grab - the ‘narrow’ feature of data mode
(ctrl-’n’) combined with ‘unassemble’ (ctrl-‘u’),
invokes a split screen displaying assembly language
in the right 20% (16 columns) of the 80 column
screen. Grabbing (via ctrl-‘g’) will snag the
displayed section of code to the kill buffer for recall
or saving with or without append, and there is more
to come.

On the next page, we’ll discuss a few more details of
data mode and provide a screen capture of the work in
progress. There is alot of development required to
deliver on these features, but we are off to a good start.

A font problem, and a fix
As discussed in issue #10 and #11, the nanoEdit project
chose to adopt a Commodore-like reverse field scheme.
This allowed us to preserve the core of the SpeedScript
edit, store, and render code.

The tl;dr: nanoEdit (in development now), has a data
mode that allows viewing and editing of unstructured
binary files, useful for modifying data or creating binary
files. Upon release, nanoEdit will join the growing list
of F256 software, on a collective mission to support on-
platform development.

Introduction
On the pages above, we discussed binary file types
including KUP autostart files, PGX files, and others. In
addition to the popular standards and known types, exists
a category of binary files containing some semblance of
structure, if not, embedded machine code.

Filetypes in this in-between category might include BMP
derivative files (discussed in Ernesto’s article),
application specific files such as those produced by the
Foenix Sprite Editor, and maybe even the Lair of the
Lich King high score file: just because you are ranked
“3rd class dung wrangler”, doesn’t mean that you can’t
edit your way onto the LotLK list of “Top 10 Least
Pathetic Souls”!
Fact is, absent a built-for-purpose editor for every data
type imaginable, at some point it will be desirable to
view and modify any file, regardless of format.

Back in ‘82
Forty-five (pushing fifty) years ago, machine language
monitors served this function. They were one of a few
go-to tools that could be used to edit binary files. To do
so, the user had to load a file into memory at a given
address, modify memory as needed, and then save the
file to back to disk, identifying the starting and ending
addresses in the process.
On page 4, we touched upon the lore of Track & Sector
Editors. Their capabilities were impressive for the time,
but unless you yearn for nostalgia, the technology is not
relevant today.
Data mode of nanoEdit is closer to a machine language
monitor in operation, but easier to navigate. If you must
have your T+S Editor, there is nothing stopping an
enterprising individual from writing a wedge that speaks
directly to the FNX1591 and populates document
memory of nanoEdit with sector buffers. I smell a
hackathon project.

Use cases - Three to discuss:
1. File copy - this three minute long video sparked my

interest in creating data mode. Despite looking at the
SpeedScript source code for a few weeks (at that
point), I failed to realize that one of Charles
Brannon’s features was somewhat unintended. His
memory model and display routine could handle all
8-bit values ($00 .. $ff) without fail. He did this,

https://www.youtube.com/watch?v=1oF9AhXnjVY

In doing so, we moved a number of line draw characters
from the native F256 character set to the lower range of
the set, intended for menus and dialogue boxes. In a prior
version of nanoEdit they were in the $14 - $1f range
and included: . We also
redefined characters to enhance the interface, originally
$07 - $13 to: .
Cute… but in data mode, this complicates the desire to
display all 256 byte values with glyphs. Many are aware
that a tilde: ‘~’ is ASCII 127 and ‘A’ is 65, but few will
remember what this is: . (spoiler… it is $1d in the
nanoEdit character set, $9a in the F256 char set and $b2
in PETSCII. So much for standards)!
It gets worse. How do you feel about this character: ?
It’s $0e, of course! Ridiculous.
By leveraging the seldom used F256 alternate character
set feature (FON_SET @ bit 5 of $d001), a 2nd set of
glyphs is defined representing ASCII value $00 - $1f
and $80 - $9f. So instead of seeing the end of
paragraph arrow: , we get a hexadecimal “1f” as
called out below. This is better.

Wait, not so fast.
What occurs should
we load a binary file
into memory
containing
unprintable byte
values and then
try to edit the doc
in ‘text’ mode?
For starters, the
load routine scans
input data and
selects the
appropriate mode
(text, the default).
But, the user is
not restricted from
switching.
The answer is, we
display it with a
token as a special

character, otherwise impossible to type in text mode;
the “diamond” character of Leonard Tramiel's famous
Commodore card-suit set gets the job.

Data Editing Model
SpeedScript and therefore, nanoEdit’s text mode, has two
and only two rendering features built into the ‘refresh’
routine. Discussed above, the first invokes an end of
paragraph action when character $1f is encountered.
The second feature affects word-wrap by scanning
backwards from column 40 to column 1 in search of a
space (ASCII 32). If found, the line from that point
forward is forced to the next line; if no space is found,
the text occupies all 40 columns of that screen line; the

routine continues in-kind on the following line until the
full screen is rendered.
In our data mode, we simply defeat both of these
features, utilizing every character of every line and as
you’ll see in the next section, this serves well in
tracking offset addresses (especially in [n]arrow mode,
which is 64 bytes of 80 wide).
Unlike SpeedScript, cursor movement is simple. Logic
to seek the next paragraph and sentence is removed.
Finally, data mode supports a few extended commands,
which we mention below and will dive into next time.
On screen status
The following screen capture reflects the current build
of data mode. You’ll notice that rather than showing the
cursor position in terms of column number and
percentage through a file (the subject of issue #11’s 16-
bit division discussion), data mode status lines display
the cursor position as an offset in bytes from the
beginning of the file along with the file size (also in
hex), and the character under the cursor.
The upper status line retains its job as in text mode, and
is likewise used to prompt for functions only available
to data mode; this includes [v]alue entry of hexadecimal
bytes and the ability to search via the [h]ex hunt feature.

Next steps for the nanoEdit project
Next month, we will return to the FLASH format as we
continue to make progress on the nanoEdit project. For
now, have a look at this video (and potentially others)
as working prototypes become ready for demo.

2412/2023-Full

Figure 24a - ‘data’ mode chars
$00-$1f and $80-$9f

Current value

(char under cursor)

FilesizeCursor

offset (top left

at start of file)

cursor

For a YouTube video on this subject click here

https://www.seti.org/leonard-tramiel
https://youtu.be/yqZbgxwN71Y

I admit it: I’ve been obsessed with the Commodore
Christmas Demo since seeing it for the first time (1984)
at a computer store in Selden, New York.
I was a College freshman at the time living in Berkeley,
California and had returned home for the holiday. While
on break, I wandered into the store (still trying to find the
name of it) to see what was happening.
I’ll cut the story short, except to say that a gift of sorts
led me to obsess over the greatness of this demo for most
of my adult life.
On second thought, I need to share … one of the guys
that worked there looked the other way so I could make a
copy. “… well, I really shouldn’t, but it’s Christmas so
go ahead; don’t let the owner catch you, I’ll get in
trouble…”. Nearly 40 years after losing my copy, I
bought a cartridge from an Etsy seller; in a way, the
Universe has been after me to do this for a long time.
There are a few halfway-decent videos that mention this
demo, but no deep dives into how it was created or what
makes it tick. You can find my hackathon result on the
Foenix Marketplace, run-able as a .PGX for the SID
equipped F256 Jr. or any F256K. I’ll place the assets
into GitHub when I have time.
And when I really have time, I’ll write a story about how
I attacked the job and how I was able to get part of it
working in 4 days. It was an unmitigated disaster, but I
learned alot and had fun. Isn’t that the point?

 Merry Christmas
 EMwhite (Michael)

2512/2023-Full

Nostalgia dialed up to 11: Commodore’s Christmas Demo Rides Again
 40 years of obsession has led to this… “the demo made me do it !!"

Intro - white noise

Village scene - Good Christian

Tree scene - Jingle Bells

Candle scene - Silent Night

City scene - Rudolf

Angel scene - Hark

Snowman scene - Frosty

• Animated chars, smoothish
scrolling, sprites (3 color CBM logo)

• Most graphically complex scene
due to accumulating snow with
‘smooth’ scrolling. Would require
the use of tiles on the F256.

• “Soundtrack”, as it were, is filter
swept noise w/modulation.

• Fixed chars, animated char snow

• The snow animation uses some

intelligence, and is shared across 3
scenes. All 3 have color artifact
errors (especially Frosty).

• The soundtrack melody is multipart
choral of similarly tuned oscillators.

• Fixed chars, flashing sprites (2
color tree ornaments)

• Of course the soundtrack is iconic.

• Visually, the scene leverages a field

of simple sprites which flash once
per note phrase. The code is
peculiar and the most simple; to be
covered in a future article.

• Fixed chars, sprite animation (2
single color flame elements)

• Candle flame is composed of two
sprites, 8 frames per

• The soundtrack sounds as if it’s
using heavily filtered single part
simple chords. We will verify this in
a feature on SID music in future.

• Fixed chars, animated char snow,
sprite movement and animation (4
colors including flashing nose)

• Rudolf, Santa, and his sled are
composed of multiple sprites and is
x and y expanded on the 2nd pass.

• Soundtrack is similar to Jingle Bells
in Frosty in structure and tone.

• Fixed chars

• The only scene with no sprites or

character animation.

• This song is beautiful but could use

more adventurous oscillator and
filtering choices. Perhaps we will
present a remix arrangement next
year and lengthen the sequence.

• Fixed chars, animated char snow,
sprite animation (6 colors)

• Leverages double-x, double-y
expanded sprites

• Soundtrack utilizes an alternating
1-2 bass sequence and a simple,
single-voice legato lead line, The
character on the right appears to
be winding up to throw a snowball !

~33 sec.

~29 sec.

~22 sec.

~34 sec.

~25 sec.

~34 sec.

~29 sec.

“CHRISTMAS” is the file you load
and run. It’s a BASIC program that
asks if you would like to run once (1),
or continuously (0), and pokes that
value into
40959.

It then loads
the MUSIC
file, CODE file,
and main
(BASIC) ROOT
program and
slams “RUN”
into the
keyboard
buffer.

“CHRISTMASMUSIC” is the largest
file, weighing in at 149 blocks or

~36K. It loads into memory from
$0d00 - $9fff. The name is

misleading since it contains code for
two of the scenes and most of the

graphic and character screen data.

Interpreting machine code is a lit fuse

wearing on your patience and
determination. One of my mentors

once proclaimed: “grit dictates who
succeeds and who quits. It’s not

intelligence or skill; it’s the desire and
determination to keep charging !!”

“CHRISTMASROOT” coordinates
the scenes. It is written in BASIC
and uses a series of variables
with SYS calls to paint each
screen and control the action.

“CHRISTMASCODE” is primarily
machine language but does contain
data including the famous ‘sales
pitch’ text. It loads from $c000-
$cfff.

Not depicted: The “sales pitch” scene, which boasts J. S. Bach's Invention #13, the most ambitious track of them all; aside from mid-play re-voicing
(which became common as SID music evolved, this track exploits the SID’s ring modulator in various forms. It is represented in FOENIXMAS23.

	Long format return

