
Byte 0 signature: ”PGX"
Byte 3 $03 CPU type
Byte 4 $00 $40 Destination addr.
Byte 6 $-- $-- (unused)

Byte 8- $20 $21 $12 (data)

Byte 0 signature: $F2, $56
Byte 2 size of program in 8k blocks
Byte 3 starting slot
Bytes 4-5 start address (to be exec’d)
Bytes 6-9 reserved
Bytes 10- zero-terminated program name

Byte x- (data)

F256 Binary Files and Headers
A quick look at the ins and outs of 3 types of binary files including .PGX and

the $F2, $56 auto-execute variety

On prior pages, we discussed the .PGX format but there are others to mention. Differences aside, most have two things in
common: a) somebody though it a good idea to define a format and b) it wasn’t just an idea; one or more people invested
effort to create a loader, editor, or attribute viewer. With sound design and some amount of good fortune, formats and
standards catch on; in rare cases, they form the basis of a solid ecosystem that contributes to make a good platform, great.

The most simple header I’m aware of, was the Commodore .PRG format. Kernal LOAD and SAVE vectors counted on it
to inform the loading of binary and BASIC programs, disk directories, and even app data (e.g. SpeedScript documents). It
did so with only two bytes of meta-data, representing the load address in low-byte/high-byte format. Unfortunately,
nothing within this thin spec identified the execution address, and if you are familiar with the C64 and its ancestors, you’ll
probably know that the characters ‘P’, ‘R’, ‘G’ are not part of the filename at all; they manifested from byte 0 of a file’s
directory entry, occupying a column in the ‘$’ output along with SEQ and REL. In the old days, if you didn’t know where
or how to load something, detective work was necessary. Proprietary loaders adorned nearly every multi-file program,
especially commercial titles. Thankfully, standards have evolved since the ‘80s and our lives are improved in this regard.
Foenix platforms do not have an 8.3 filename spec or a system extension registry. Extensions are merely a few courteous
characters at the end of a filename. In this one-pager, we will profile a few of these formats. Ultimately, the job is the
same; to load (one or sometimes, many) files into memory where they belong so a program or the user can use them.

None - these binaries are unstructured,
but common convention on 6502 platforms
has been to align the desired start
address to the reset vector ($fffc).

In some cases, developers have created
their own formats. We’ll point to a
few app specific use-cases below.

.PGX $F2, $56 auto-exec Generic binary

De
sc

rip
tio

n
By

te
 fo

rm
at

H
ow

 to
 lo

ad
 a

nd
 e

xe
cu

te
.
a
s
m

 d
ire

ct
iv

es

Upon load, data is placed in memory at
byte offset $08 (the header is processed,
but not stored to memory).
When the application ends (with an rts),
the program that initiated the load may
either resume control, or reset the system.
Here is the “from SuperBASIC” form,
discussed on pg. 3:

PGX files (see pg. 3) contain identifying
information and a load address and can
start a program composed of a single
segment. PGZ files are similar, but have
provisions for multiple segments, loaded
across memory (see links below).

* = $4000

.text "PGX"

.byte $03

.word keys.cmd

.word 0

Se
e

al
so https://wiki.c256foenix.com/index.php?

title=Executable_binary_file

Auto-exec binaries, marked by $F2, $56
(aka F256), in bytes 0 and 1 are scanned
for by the kernel at start-up. The
MicroKernel code that manages startup
is MMU ‘slot’ aware.

At detection (during boot or reset), x
number of blocks (byte 2), consecutive
from the signature block, are moved to slot
y (byte 3) and execution begins from the
low-byte/high-byte address in bytes 4 & 5.
Combined with the ability to flash blocks
to cartridge or onboard flash (via the F256
Uploader) and use the MicroKernel DOS
lsf command (see figure 4a), this
capability is of great use to developers and
users interested in customizing their
system startup and onboard toolset.

* = $4000

.text $f2,$56

.byte 1

.byte 2

.word keys.cmd

.word 0

.text "sak - standalone keys",$0

Not applicable

Loosely, any file type may be called binary.
More commonly, the name refers to non-
ASCII data that is largely unprintable.
A char set ‘font’ file is an example of one,
as is machine code or sprite graphic data
loaded by SuperBASIC, noted below.

Absent identifying information indicating
how or where to load or execute, the parent
or calling program must load the data into
memory at a prescribed address. Within
SuperBASIC, this can be done as follows:
BLOAD "{filename}", {[$]addr}
… and if code, it can be executed using:
CALL {[$]addr}

There are several examples present in the
Foenix F256 Graphics Toolkit by Ernesto
Contreras (see link below).

https://github.com/ghackwrench/
F256_Jr_Kernel_DOS/blob/main/kernel/
README.md (see the “Startup” section)

1012/2023

http://apps.emwhite.org/shared-files/770/?F256-
GraphicToolkit-11.zip&download=1
See line 3500 onwards in the Foenix Sprite
Editor “spreditjr.bas” for the BLOAD sprite
load code.
See line 3650 onwards in the Foenix Font Editor
“fontjr.bas” charset load / relocate code.

https://github.com/FoenixRetro/Documentation/
blob/main/f256/programming-file-formats.md

(applies to both)

https://github.com/FoenixRetro/Documentation/blob/main/f256/programming-file-formats.md
https://github.com/FoenixRetro/Documentation/blob/main/f256/programming-file-formats.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://wiki.c256foenix.com/index.php?title=Executable_binary_file
https://wiki.c256foenix.com/index.php?title=Executable_binary_file
http://apps.emwhite.org/shared-files/770/?F256-GraphicToolkit-11.zip&download=1
http://apps.emwhite.org/shared-files/770/?F256-GraphicToolkit-11.zip&download=1

