
This early-access article focuses on MicroKernel DOS and related topics.
It was originally intended to be part of a multi-article FULL issue of Foenix Rising
(and it will be); considering the amount of work and testing that was invested
producing it, I thought it best to release it first as a FLASH! format article.
The next full version of Foenix Rising will be released on December 24th! I hope you
like it (and this) …
MicroKernel DOS - Hidden beneath SuperBASIC exists a set of system tools,
providing support for disk operations and general utility. This article digs into sample
code and assembler output, discussing how to use MicroKernel in the process.

(FLASH!) Dec. 2023 / F12

This page is otherwise blank
:)

312/2022

MicroKernal DOS & more …
 A practical command primer, a look at binary file types, and sample MicroKernel code “for the rest of us”

(Thank you to Celton, dwsJason, and Gadget for helping me troubleshoot and ultimately, round out my knowledge on these topics)

.PGZ files take this a step further and support multi-part
or multi-segment files. The rest of this article will
discuss .PGX files; we’ll get to .PGZ another time.

Info on .PGX files can read about on the Foenix Wiki
here. Here is a F256 appropriate sample header:

Generic.bin files, on the other hand, are binary files
with no identifying load address or embedded execution
information. .bin files are either pushed into a specific
address with the F256 Uploader/Updater utility or loaded
to a specified address using BLOAD in SuperBASIC.

Still, a 3rd type of binary file contains an auto-execute
header, akin to the old Commodore 64 “CBM80”
cartridge standard. The F256 auto-exec functionality is
applicable across flash memory, flash cartridges, and ram
memory; also to be discussed further another time...

MicroKernel DOS Command overview
We won't cover all of the commands, but have comments
on several and have included links to other sources.
- {program}.PGX - execute code from the default
path. As from SuperBASIC, the space is required.
Change Drive - by typing a number [0 .. 4] followed
by a colon, you change the drive which will be acted
upon as default (the prompt will change). 0 corresponds
to the built-in SD card (if present), and 1 .. 4 maps to
IEC bus devices 8 .. 11 respectively.
ls or dir - either command will list the directory
starting with the disk label (if assigned) followed by one
line per file and its size in blocks in hexadecimal format.

One SD disk block is equivalent to 256 bytes of data,
however, on IEC devices, a disk block is 254 bytes of
data. Fun fact: the ancient Commodore disk format

Introduction - to use, type “/DOS” from SuperBASIC
By typing these four simple keystrokes and pressing
<enter>, you can escape SuperBASIC and enter a world
where you are afforded a variety of additional commands
for managing your F256K, including:

• traditional disk functions including formatting
• viewing flash memory banks installed
• creating text files (BBS style) or dumping the

contents of a file in ASCII or hexadecimal byte form
• testing the keyboard
• configuring the optional WiFi interface

This somewhat hidden layer sits somewhere between the
utility of a Commodore’esque DOS wedge, and the
command set included in MCP (the operating
environment for A2560 family machines, written by
Peter Weingartner).
The drive numbering system is identical to the
convention used within SuperBASIC, namely, drive ‘0’
for the built-in SD interface, and drive numbers ‘1’, ‘2’,
and so on, for IEC bus connected peripherals.
Figure 3a represents MicroKernel DOS help; if you are
running an older kernel and see something different,
check pg. 2 for information on updating your system.

Running .PGX files
There is now a vetted method for executing .PGX or .PGZ
files. You an do this from SuperBASIC’s screen editor
or from DOS (with a slight syntax
variation). From SuperBASIC type
the following:

 /- {program}.PGX

A .PGX is an executable file similar
to a ‘.com’ or ‘.exe’ on Microsoft
DOS or CP/M systems. It might
also be compared to a .PRG file on
vintage Commodore systems,
however the latter is primitive by comparison. At the
lowest level, these types of files have headers identifying
the load address. In the case of .PGX, this is also the
execution address and qualifying machine information.

Offset Count Example Purpose
0 3 "PGX" Signature
3 1 $03 CPU
4 4 $08 $40 $-- $-- Destination addr
8 - $20 $21 $12 ... Data to load

Note: CPU type $01 (as detailed on the linked page) represents the
WDC 65816 CPU; $02 is 68K family; $03 is the 6502, proper for the
F256 platform.

Figure 3a - DOS help

mind the gap; a space is required

Pro tip: the update of FLASH blocks containing the F256
Kernel, DOS layer, SuperBASIC, and other operating code
and utilities is pushed through the F256 USB-mini interface
using a simple cable to your host. From a software perspective,
you will need either the FoenixMgr framework (requires Python),
or the Windows based F256 Uploader application*.
This is different from the VICKY (FPGA) update procedure
which requires a ‘blaster’ device connected to the 10-pin (2 x 5)
JTAG header and the use of the Intel/Altera Quartus software.

Perifractic demonstrates the Windows based F256 Uploader here.
You can also use it to write your own programs to flash!

*

convention

https://wiki.c256foenix.com/index.php?title=Executable_binary_file
https://www.youtube.com/watch?v=TJQgecozNzU&t=483s

412/2022

lsf - generates a list of programs resident in flash
memory. The graphic and callouts below provide an
example ‘build'. This might be considered an advanced
topic, but it's good to have working knowledge for the
simple reason that a misstep during a code push can ‘brick’
your system. But rest assured, mishaps are easily corrected
and there are plenty of advanced users on Discord eager to
help. In my case, I learned that uploading an 8,192 byte
file of nulls could be used to disable an errant auto-start
image Our community is a full circle of beginner,
intermediate, and advanced users and developers. We
depend upon, and help each other every day. Yet another
reason why the Foenix platform is unique.
rm or del or delete {file} - allows deletion of a
file. It is possible to explicitly identify a drive which is
different from the default by preceding the file name with a
drive number: “rm 2:{file}” as an example to remove
the named file from IEC device #9.
keys - invokes a utility which tests the use/action of your
input devices (keyboard and joysticks) against kernel event
routines. From a practical standpoint, this utility does not
serve much of a purpose except to check for broken
switches or keys, or to highlight anomalies in PS/2 support,
but it’s an excellent example of working code which is
built using MicroKernel services. Example sources are
freely available in a GitHub repository, discussed on the
next page and used as an example project in this article.

obeyed by JiffyDOS in your FNX1591 (and other IEC
devices) used bytes 0 and 1 of each sector to link to the
next track and sector. Track and Sector editors such as
“Disk Doctor” pictured on page 16 of issue #4 gave the
user the power to interrogate and edit data on disk
sectors directly. Perhaps some enterprising individual
will write a T+S editor for the F256 platform?
write {file} - create/write a text file to disk using a
“bbs” style line editor. Note that I am calling the line
editor bbs-style; there is no doc suggesting this, but I
have a few clues that Gadget spent a fair amount of time
on tty connected systems in the good old days.
The line editor opens tabbed to column 4 (these spaces
will not appear in your file) and allows printable ASCII
characters to be entered, up to 75 characters per line.
Each line is terminated with a carriage return aka ASCII
0x0d (which is added to your file) and you may
continue to append until ‘.’ is entered on a blank line
(the ‘.’ and final return is not added to your file).
dump {file} - read and display hexadecimal values,
16 at a time until end of file is reached.
read {file} - read and display ASCII values until
end-of-file is reached. Bonus feature: there is no harm is
displaying binary data using this command since graphic
glyphs are bound to all 256 ASCII values. The only
character interpreted by DOS’s simple output routine is
ASCII 13 (carriage return). Hence, you will never
experience the peculiar behavior such as screen clearing,
odd colors or erratic cursor motion as experienced on
legacy platforms or vt* type ASCII terminals.
To relive the power of leveraging inline control codes in
a PETSCII context for constructive means, see this video
:)

This is the DOS shell release date
(corresponds to flash block 06 in this

example; this is the binary for the DOS
shell, itself)

SuperBASIC ‘HELP’ - a near-line manual
A rudimentary viewer and the full text of most of
the manual bound within this 5 block package;
recallable by typing “/HELP” from SuperBASIC

(note that if you have an unsaved program, you will
be asked to confirm before exiting)

xdev framework
Tools to support cross-

development and specifically,
file transfer from host to your

F256 platform SD device # of registered devices
is: 3; dev ‘0’ (SD),

‘1’ (IEC 8), and ‘2’ (IEC 9)

SuperBASIC
4 x 8k blocks

containing
binaries

DOS binaries
(The interpreter and
code described in

this article)

‘-’ pexec binary
Callable from

SuperBASIC or DOS
to load and

exec .PGX binaries

But where is MicroKernel? - lsf does not provide the visual; however, in the current distribution (as of December 2023),
MicroKernel occupies 5 blocks ($3b .. $3f); Quiz: how much flash is left for the user? Answer: plenty (47 x 8k blocks !!)

My generation was scarred by ‘inhabitants’ purposely picking
up the phone extension at home, intentionally interrupting
the glory of 300 bps analog modem surfing. Characters
became garbled, throwing ctrl-codes to the terminal, trashing
the display or worse, switching to a foreign DEC character
set. THE WORST, was having to restart a binary download!

retro remnant: land-line warfare

5

wifi {ssid} {passcode} - assists in configuring
the ESP Feather board with your WiFi network and
password, if installed. I do not own one (yet) but here
are a pair of YouTube videos that discuss this topic:
• Foenix Discord user ‘PJW’ published this video in

mid-July of 2023; access it here. This video focuses
on the software aspect of the job and is highly
detailed and comprehensive.

• Foenix Discord user ‘1Bit Fever
Dreams’ published a video in
early December of 2023; it can
be accessed here. It covers a
number of new use cases and a
super close up view at soldering steps. For visual
learners (I'm one), this will be invaluable.

I recommend watching both before attempting the
upgrade. In addition, as pointed out in the 2nd video,
there is a new option available to those purchasing their
systems, to buy them WiFi enabled for a modest
additional charge.

MicroKernel Code samples
When Gadget released DOS, her intention was twofold.
One one hand, she knew that SuperBASIC was, well…
basic; disk utilities were absent, as were utilities for
developers interested in interrogating files (the ability to
dump file data in hex format), for example.
She has also pointed to DOS as a kernel programming
example; it demonstrates event use and device access
code for at least 85% of the functions.
A third unintended benefit of hosting an evolving
platform utility within DOS is to keep SuperBASIC
confined and focused, thus leaving more memory for
user-developed BASIC programs. This will allow DOS
to expand over time, serving as a MCP-lite environment
where other applications can be integrated and launched.
Let’s conduct a mini case study of the DOS “keys”utility,
(inside-out) in an effort to provide a MicroKernel starter
app, and to answer one of the most oft asked questions
about writing code for the F256: “how do I scan/read the
keyboard and joysticks. Is there any example code?”.
The answer is: “It’s easy”, and “absolutely”; not only are
the full sources for DOS published in this publicly
available GitHub repository, but we’ve extracted “keys”
and wrapped it within a small .PGX executable,
specifically to make it more lean and understandable.
I took some liberty in the process, simplifying some
amount of Gadget’s original code to lessen the
dependancies on associated display code, and have also
reduced the use of sections and namespaces. I’ll point
out a few highlights in the code listing below.
Before looking at the source code, I suggest running the
DOS utility yourself by typing “keys” at the DOS
prompt. Once in the app, press keys and various
combinations of meta-keys (also, a joystick) and observe

the behavior. Notice key combinations, and how it
works from a mapping and user interface perspective.
This will come in handy when you study the code later.
The following partial screen shot shows the finished
product. A simple line of descriptive text was added to
frame the data by ‘type’. This is just window dressing,
but adds flair. Remember our motto: “details matter”.

MicroKernel Use Prereqs
Three steps, and then you may start calling functions to
process events or otherwise address devices. It should be
stated that not all of MicroKernel’s vectors leverage
argument passing; kernel.Display.Reset at $ffcc
for example, is one that does not. This is among the first
things we do (line #20) in the code below (pg. 8).
Ok, here’s the drill:
Step #1: declare event struct vars - in 64tass, we do this
by adding the following single statement to our source:
event .dstruct kernel.event.event_t

This line informs the assembler of MicroKernel data
structures (imported from the api.asm include file in
step #3). Within your program, memory is required to
house values such as event.key.ascii (see the
example below). You might notice in reviewing this, a
range of addresses overlap beginning at $418c; this
memory is reused and is populated based on the event
type. In your code, you simply access elements as
appropriate after NextEvent returns a given type.
4189 event .dstruct kernel.event.event_t
4189 type .byte ? ; enum above
418a buf .byte ? ; page id or zero
418b ext .byte ? ; page id or zero

418c key .dstruct kernel.event.key_t
418c keyboard .byte ? ; keyboard ID
418d raw .byte ? ; Raw key ID
418e ascii .byte ? ; ASCII value
418f flags .byte ? ; Flags (META)

418c joystick .dstruct kernel.event.joystick_t
418c joy0 .byte ?
418d joy1 .byte ?

418c timer .dstruct kernel.event.timer_t
418c value .byte ?
418d cookie .byte ?

418c tcp .dstruct kernel.event.tcp_t
418c len .byte ? ; Raw packet length

Step #2: Inform the kernel of the address of event. In
step #1, we provided the assembler with details on how
we intend to address data we are accessing, here we tell
the kernel where it lives, using <# and #> directives.
The low-byte and high-byte values are stored to
kernel.args.event and kernel.args.event+1.
There is nothing more to discuss here, it is taken care of
on lines 24-27 and never worried about again.

12/2022

left-shift; ALT pressed
after the fact ordinary keys

(however,
upper case)

F4 left nibbles (“00”) is JOY1;
right two (“18”) is JOY2
representing button #1
(“18”) and RIGHT (“18”)

si
ng

le
 o

cc
ur

re
nc

e
of

 $
4
1
8
9
-
$
4
1
8
b

 $
4
1
8
c

 is
 re

pe
at

ed

https://www.youtube.com/watch?v=UgsJo53sJrw
https://www.youtube.com/watch?v=gJ9rZczDlfA
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/tree/main/dos

6

Here is the code (again, from our ‘sak’ example aka
stand-alone-keys). This is unchanged from the original:
 lda #<event
 sta kernel.args.event+0
 lda #>event
 sta kernel.args.event+1

Step #3: Add api.asm to your Makefile, or ‘include’ it
directly into your source code (this will vary based on
the assembler being used; If you are a C lang developer,
there are .h (header) and .lib files in the cc65 folder of
the repo but here is how you do it in 64tass):
 .include "kernel/api.asm"

That's it for setup. Here is a preview of ‘use’ code aka
the event loop (discussed in detail in the code listing
below):

_loop jsr kernel.Yield
 jsr kernelNextEvent
 bcs _loop
 lda event.type
 cmp #kernel.event.key.PRESSED
 beq _pressed
 cmp #kernel.event.key.RELEASED
 beq _released
 cmp #kernel.event.JOYSTICK
 beq _joy
 bra loop

Memory use and the manifestation of event
The following 3 pages contain an excerpt of the 64tass
list output file for this project. If you’ve looked at these
prior, you'll know they are useful for debugging, but tend
to be oddly formatted and difficult to read; we’ve
improved this by inserting line numbers, aligning cols,
and annotating some key points including the struct
hierarchy.
From a memory use perspective, you’ll note that the
code portion of the program (in blue text) is only 67 lines
long, and it consumes 137 bytes of memory.
Meanwhile, data (highlighted in bolded purple text) is
256 bytes in total. In summary, here is the footprint:
.PGX header 8 bytes $4000 - $4007
— code — 137 bytes $4008 - $4090
‘digits’ data 16 bytes $4091 - $40a0
Welcome text* 232 bytes (at end) $40a1 - $4188

So, as far as 64tass is concerned, the binary file produced
is 393 bytes. That's cool, but how do the event vars
figure into the mix?

You’ll have to study the .lst file to see what's really going
on; the orange text on the next page represents the
MicroKernel event struct definition in full, and as
discussed, the act of adding api.asm to your code and
declaring the datatype welcomes it to your program.
A key point to understand: the define struct directive
(.dstruct) does not reserve any memory, it merely
establishes the structure as a template so the assembler
can do its thing and resolve references. If you look on
the next page, you'll see that the section begins at address
$4189 which is the first byte following the welcome
message termination null ($00) on line #89.
It is strongly suggested to take care and avoid using this
memory for something else such as storing local/temp
variables. Doing so would be the equivalent of declaring
a struct in the C language, calling malloc() to grab
memory from the heap (thus obtaining a pointer to it),
then writing to the address explicitly elsewhere in your
program (creating a mess). So use the ‘?’ directive
religiously to avoid this. 64tass will keep track of
memory, and keep you out of trouble.

Where are the MicroKernel Vectors? (entry points)
api.asm also includes directives to calculate vectors
along with a slew of constant definitions to make life
easier. We stop short of including it in this article, but
you’ll see the addresses explicitly detailed within a
contiguous area of memory near the end of bank 7
($e000-$ffff) in the .lst.

What about writing to devices and setting attributes?

Also in the .lst (also not captured below) you'll see a ton
of detail concerning devices that accept parameters such
as network devices, common disk functions, timer
settings, and char ‘drawing’. In this case, MicroKernel
uses a structure similar to event_t, but living in a
dedicated and reserved area of memory at the top of zero
page ($F0-$FF); the important point aside from the fact
that the overlap scheme is similar, is that this 16 byte
area of memory is the only portion of zero page that
MicroKernel needs. The “memory model” section of
this README, covers this topic in detail. The doc is a
must-read; it is concise and extremely well written.
Our example doesn't use any of these vectors so we
won't cover it in this article, but have a look at the full
repo, and look specifically at reader.asm and
cmd_wifi.asm for disk read and TCP/IP examples,
respectively.

12/2022

welcomemsg contains whitespace padding, required so text
wraps at 80 cols (yes, this is wasteful). This approach was
chosen to keep the display routine dead-simple, versus being
clever with pointers, interpretation of new lines, etc.

In the real world, you might use a simple or full featured
display library as Gadget’s original “keys” program did.

*

The following few sections delve into advanced use of 64tass
and expand upon Gadget’s use of the assembler’s more
interesting features. It is *not* absolutely necessary to gain
this understanding to use MicroKernel effectively, but it will
help you down the road, especially if the complexity of your
own programs grow. It will also help you as you begin to
borrow and maintain code from Gadget and other Foenix
developers. I am just coming to grips with it, myself. In my
opinion, it’s worth the focus and effort.

‘yielding’ is an interesting
topic (to be discussed in
future); for now just know
that this gives some time
back to the kernel

https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/kernel/README.md
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/dos/reader.asm
https://github.com/ghackwrench/F256_Jr_Kernel_DOS/blob/main/dos/cmd_wifi.asm

7

(01) Origin address of $4000
chosen because it will co-

exist with SuperBASIC
(02-05) The PGX signature occupies 8

bytes. When loaded into memory, these
bytes are not placed in memory, only our

program will (beginning at $4008).

(07-14) This virtual definition reserves the first 16 bytes of memory while
‘naming’ mmu_ctrl and io_ctrl, only the latter of which is used in this
program. On line 12, we define .word printptr, used by printmsg.

(15) As discussed above, this single line
is expanded to the full event structure

up to line 16 on the next page

12/2022

①

③f②

The mouse struct, at will be
populated with data upon

occurrence of a DELTA event or a
CLICKS event. The upper case

constants are built at assemble time
from api.asm. A compare example
in context for a click event would be:

cmp #kernel.event.mouse.CLICKS

From a data hierarchy perspective,
mouse is within the overarching

event struct that we instantiated on
line (15), and clicks

 contains inner within. We
would reference this byte as:

lda event.mouse.clicks.inner

It contains the # of clicks detected
(single, double, or triple; 1, 2*, or 3

respectively)

①

③ f②

use example

For source, .lst, and binary of sak, see the Foenix Content Store here… You’ll be pleased to see that mouse events have been added to
the code. One killer (undocumented) kernel feature: it auto-detects ‘handedness’ on double-click. Gadget thinks of everything!

*

It could be said that nested structs
create hierarchies while unions (in
green) facilitate overlap. To quote
the 64tass manual (v1.59 r3120):

“Unions can be used for overlapping
data as the compile offset and

program counter remains the same on
each line. Therefore the length of a

union is the length of its longest item.”

Combined, these features provide
something between C language

structs and the dot notation used in
Python, Java, or C++. Powerful !!

; 64tass Turbo Assembler Macro V1.58.2974 listing file
; 64tass -I . -C -Wall -Wno-shadow -x --verbose-list -b -L standalonekeys.lst -o standalonekeys.bin standalonekeys.asm api.asm

; Wed Dec 06 18:55:20 2023
;Offset ;Hex ;Monitor ;Source

;****** Processing input file: standalonekeys.asm

00 .cpu "65c02"
01 * = $4000

02 >4000 50 47 58 .text "PGX" ; Signature
03 >4003 03 .byte $03 ; machine type
04 >4004 08 40 .word keys.cmd ; execution addr
05 >4006 00 00 .word 0 ; 3rd and 4th byte of starting addr not used on 8-bit systems

06 .dsection code

07 .virtual $0000 ; Zero page
08 >0000 mmu_ctrl .byte ?
09 >0001 io_ctrl .byte ?
10 >0002 reserved .fill 6
11 >0008 mmu .fill 8
12 >0010 printptr .word ?
13 .dsection dp
14 .endv

15 .4189 event .dstruct kernel.event.event_t
 >4189 type .byte ? ; Enum above
 >418a buf .byte ? ; page id or zero
 >418b ext .byte ? ; page id or zero
 .union

 .418c key .dstruct kernel.event.key_t
 >418c keyboard .byte ? ; Keyboard ID
 >418d raw .byte ? ; Raw key ID
 >418e ascii .byte ? ; ASCII value
 >418f flags .byte ? ; Flags (META)
 =$80 META = $80 ; Meta key; no associated ASCII value
 .ends

 .418c mouse .dstruct kernel.event.mouse_t
 .union

 .418c delta .dstruct kernel.event.m_delta_t
 >418c x .byte ?
 >418d y .byte ?
 >418e z .byte ?
 >418f buttons .byte ?
 .ends

 .418c clicks .dstruct kernel.event.m_clicks_t
 >418c inner .byte ?
 >418d middle .byte ?
 >418e outer .byte ?
 .ends
 .endu
 .ends

 .418c joystick .dstruct kernel.event.joystick_t
 >418c joy0 .byte ?
 >418d joy1 .byte ?
 .ends

 .418c udp .dstruct kernel.event.udp_t
 >418c token .byte ? ; TODO: break out into fields
 .ends

 .418c tcp .dstruct kernel.event.tcp_t
 >418c len .byte ? ; Raw packet length.
 .ends

 .418c file .dstruct kernel.event.file_t
 >418c stream .byte ?
 >418d cookie .byte ?

 .union
 .418e data .dstruct kernel.event.fs_data_t
 >418e requested .byte ? ; Requested number of bytes to read
 >418f read .byte ? ; Number of bytes actually read
 .ends

http://apps.emwhite.org/foenixmarketplace/

812/2022

= MicroKernel Vectors

_joy calls print_hex for each of
the two joysticks (when either
triggers an event) then branches
back to the event loop (_loop)

_pressed exits upon <return>
and cleverly prints meta key
flags, then keypresses beginning
at screen location $c0f0.

The original “keys” program
leveraged display.asm to
write to the screen indirectly.

This was simplified to a static
location to reduce overhead.

Discussed on pg. 6
above, the kernel
clears the carry flag
when an event is
pending.

On line (31), the
event type is loaded
into the accumulator
then compared with
constants to branch
on events

 .418e wrote .dstruct kernel.event.fs_wrote_t
 >418e requested .byte ? ; Requested number of bytes to read
 >418f wrote .byte ? ; Number of bytes actually read
 .ends
 .endu
 .ends

 .418c directory .dstruct kernel.event.dir_t
 >418c stream .byte ?
 >418d cookie .byte ?
 .union

 .418e volume .dstruct kernel.event.dir_vol_t
 >418e len .byte ? ; Length of volname (in buf)
 >418f flags .byte ? ; block size, text encoding
 .ends

 .418e file .dstruct kernel.event.dir_file_t
 >418e len .byte ?
 >418f flags .byte ? ; block scale, text encoding, approx sz
 .ends

 .418e free .dstruct kernel.event.dir_free_t
 >418e flags .byte ? ; block scale, text encoding, approx sz
 .ends
 .endu
 .ends

 .418c timer .dstruct kernel.event.timer_t
 >418c value .byte ?
 >418d cookie .byte ?
 .ends
 .endu
 .ends

16 keys .namespace

17 .section code
18 .4008 a9 02 lda #$02 cmd lda #2
19 .400a 85 01 sta $01 sta io_ctrl
20 .400c 20 cc ff jsr $ffcc jsr kernel.Display.Reset

21 .400f a2 a1 ldx #$a1 ldx #<welcomemsg
22 .4011 a0 40 ldy #$40 ldy #>welcomemsg
23 .4013 20 80 40 jsr $4080 jsr printmsg

24 .4016 a9 89 lda #$89 lda #<event
25 .4018 85 f0 sta $f0 sta kernel.args.events+0
26 .401a a9 41 lda #$41 lda #>event
27 .401c 85 f1 sta $f1 sta kernel.args.events+1

28 .401e 20 0c ff jsr $ff0c _loop jsr kernel.Yield
29 .4021 20 00 ff jsr $ff00 jsr kernel.NextEvent
30 .4024 b0 f8 bcs $401e bcs _loop

31 .4026 ad 89 41 lda $4189 lda event.type
32 .4029 c9 08 cmp #$08 cmp #kernel.event.key.PRESSED
33 .402b f0 1e beq $404b beq _pressed
34 .402d c9 0a cmp #$0a cmp #kernel.event.key.RELEASED
35 .402f f0 16 beq $4047 beq _released
36 .4031 c9 04 cmp #$04 cmp #kernel.event.JOYSTICK
37 .4033 f0 02 beq $4037 beq _joy

38 .4035 80 e7 bra $401e bra _loop

39 .4037 a2 00 ldx #$00 _joy ldx #0
40 .4039 ad 8c 41 lda $418c lda event.joystick.joy0
41 .403c 20 66 40 jsr $4066 jsr print_hex
42 .403f ad 8d 41 lda $418d lda event.joystick.joy1
43 .4042 20 66 40 jsr $4066 jsr print_hex
44 .4045 80 d7 bra $401e bra _loop

45 .4047 a9 20 lda #$20 _released lda #' '
46 .4049 80 11 bra $405c bra _show

47 .404b ac 8e 41 ldy $418e _pressed ldy event.key.ascii
48 .404e c0 0d cpy #$0d cpy #13
49 .4050 f0 12 beq $4064 beq _done

50 .4052 a9 58 lda #$58 lda #'X'
51 .4054 2c 8f 41 bit $418f bit event.key.flags
52 .4057 30 03 bmi $405c bmi _show
53 .4059 ad 8e 41 lda $418e lda event.key.ascii
54 .405c ac 8d 41 ldy $418d _show ldy event.key.raw
55 .405f 99 f0 c0 sta $c0f0,y sta $c0f0,y
56 .4062 80 ba bra $401e bra _loop

9

57 .4064 18 clc _done clc
58 .4065 60 rts rts

59 .4066 48 pha print_hex pha
60 .4067 4a lsr a lsr a
61 .4068 4a lsr a lsr a
62 .4069 4a lsr a lsr a
63 .406a 4a lsr a lsr a
64 .406b 20 75 40 jsr $4075 jsr _digit
65 .406e 68 pla pla
66 .406f 29 0f and #$0f and #$0f
67 .4071 20 75 40 jsr $4075 jsr _digit
68 .4074 60 rts rts

69 .4075 5a phy _digit phy
70 .4076 a8 tay tay
71 .4077 b9 91 40 lda $4091,y lda digits,y
72 .407a 7a ply ply
73 .407b 9d 31 c1 sta $c131,x sta $c131,x
74 .407e e8 inx inx
75 .407f 60 rts rts

76 .4080 86 10 stx $10 printmsg stx printptr
77 .4082 84 11 sty $11 sty printptr+1
78 .4084 a0 00 ldy #$00 ldy #$00
79 .4086 b1 10 lda ($10),y printloop lda (printptr),y
80 .4088 f0 06 beq $4090 beq exitprint
81 .408a 99 00 c0 sta $c000,y sta $c000,y
82 .408d c8 iny iny
83 .408e 80 f6 bra $4086 bra printloop
84 .4090 60 rts exitprint rts

 >4091 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66
85 digits .text "0123456789abcdef"
 >40a1 54 68 69 73 20 70 72 6f 67 72 61 6d 20 73 68 6f
 >40b1 77 73 20 74 68 65 20 68 65 6c 64 20 73 74 61 74
 >40c1 75 73 20 6f 66 20 6b 65 79 73 2e 20 50 72 65 73
 >40d1 73 20 3c 45 4e 54 45 52 3e 20 74 6f 20 71 75 69
 >40e1 74 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >40f1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >4101 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 >4111 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

86 welcomemsg .text "This program shows the held status of keys. Press <ENTER> to quit. "
87 .text " "
88 .text $a0," meta: ",$a1," ",$a0,$96," ascii & extended keys... ",$a0," f1-f8/12 “,$a1
89 .text. " ",$a0," joys “,$a1,$0
90 .send
91 .endn

Interpreting Events
Now that we are detecting events, what are we going to do with them? Before deciding, we need to understand the
circumstances that caused the kernel to inform us that a particular event has occurred. This primer will help.
JOYSTICK events are triggered each time a state change occurs, meaning, each time a button (or directional switch) is
detected, and each time the state changes due to release of the button or joystick back to center. You can exercise this
yourself with sak by moving a joystick in a particular direction or pressing a button, holding it, then releasing.
DELTA x and y events (mouse movement) measure velocity from a center of 0 either positive ($01, $02, $03 …
increasing) or negative ($ff, $fe, $fd …, decreasing). Down (y axis) and to the Right (x axis) are positive. The z axis
is triggered by the scroll wheel (if your mouse has one), and reads $ff when scrolled forward and $01 when scrolled
backwards, regardless of velocity. buttons returns bit values of bit 0 = inner; bit 1 = outer; bit 2 = center aka, byte values
of 1, 2, or 4. This byte returns to 0 when released, triggering an event for the action and another when there is no action.
Mouse CLICKS events are more complicated because they track single, double, and triple click. When actuated for either
of these three conditions, the stack waits ~0.5s to determine how many (clicks) have occurred on the inner, middle, or
outer button. At this point, a value of 1, 2, or 3 is placed into the appropriate register. Contrary to DELTA or JOYSTICK
events, there is no ‘unclick’ event sent for CLICKS. You are notified of the last compound click event, that's it.
The notion of inner and outer are relative to the handedness of the mouse. While righty is the default (with the inner being
the left button), all it takes is a double-click on the [then] outer button to reverse the orientation; doing so will turn your
mouse into a left-handed HID (human interface device). Double-click the left button to return to ‘righty’.
There is more to discuss on this topic, but we will have to save it for another time. It is highly recommended that you pull
the binary and source from the marketplace, try the .PGX, study the source code, and then embark on your own path.

12/2022

>4121 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
>4131 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
>4141 a0 20 6d 65 74 61 3a 20 a1 20 20 a0 96 20 61 73
>4151 63 69 69 20 26 20 65 78 74 65 6e 64 65 64 20 6b
>4161 65 79 73 2e 2e 2e 20 20 20 20 20 20 20 20 20 20
>4171 20 a0 20 66 31 2d 66 38 2f 31 32 20 a1 20 20 a0
>4181 20 6a 6f 79 73 20 a1 00

This simple print routine is single
purpose and replaces the .mkstr
macro (part of display.asm).

Characters are stored, indexed by y,
beginning at the hard-coded $c000
address. The text message below is
nearly 3 full screen lines in length.

Exits

	(FLASH!)
	Dec. 2023 / F12

