
One of my closest friends claims to be a full-stack developer but hates front-end
development. She loves data, software architecture, control planes, all of that back-
endy stuff. I never understood her way of thinking; I just thought it was snobbery.
I’m here to report that I’ve come around to see her point of view. Even the most
sparse 8-bit character based UI requires research, rewrite, refinement, and
‘performance tuning’ (note the quotes). In this issue, we unpack a number of old
school interface features and code that hopefully helps you avoid my mistakes.

(FLASH!)

The simplicity of an 80 x 30 character based screen gone awry

In this issue, we’ll dive into four [make that] five
‘features’ of the upcoming beta of nanoEdit and discuss
the complexity of each and how demons were bested.
a. How to render a QR code along with text on the screen

(used in the welcome message).
b. How to fake alternate pitch text, where standard

characters were too wide for the allotted space.
c. How to organize code and data for single-use/burn

after reading, thereby saving 2,952 bytes between
initialization and normal operation.

d. How to efficiently cycle through on-screen options,
using a simple list and ‘poked’ screen codes.

e. How to leverage the ‘Math Block’ 16-bit division
operator for a low-budget percentage calculation
(instead of lengthy & expensive ‘classic’ assembly
language). See pg. 9.

Not my first rodeo
I’m not going to lie, I had a head start. 40 years ago, I
composed my opus, an all-assembly language Terminal
Emulator for the Commodore 64. It had a reverse
engineered Punter file transfer protocol built in, a full
featured disk and data menu, Hayes Smartmodem(tm)
support, a CBM ASCII color & PETSCII graphics mode,
and a multi-file select interface which, taken by itself,
was close to the best piece of code I’ve ever assembled or
compiled (because it was well over my pay grade and a
miracle that I managed to get it working at all).
Also, my terminal emulator had a ‘frozen’ status line
above a scrolling 24 line display, embedded state
indicators, and an overlay ‘help’ screen. nanoEdit
includes these features specifically.
But there is plenty new here, made more complex by the
work required to develop a ported Commodore kernal
CHROUT routine.
Echoing the sentiment on the lead-in above, I hope some
of this code and some of the techniques are valuable to
you; if not, perhaps my foibles will be entertaining.

Strengths and weaknesses of 8-bit microcomputers
Our machines are good at bit manipulation, branching on
various states (via status register bits), incrementing
memory, pushing and popping from the stack, and even
keeping track of game score and extremely large decimal
numbers (via BCD). And that’s just the CPU. Around
1980, custom ICs empowered 8-bit systems to go further
supporting sprites, blitters, MMUs, audio and more.
But our machines are challenged to count and perform
math on large binary numbers, to move large amounts of
data efficiently, and (due to a small set of registers) track
several variables without continuously fetching and
storing to memory, which tends to get expensive.
Great things are possible, but at some point, small
systems run out of memory, processor cycles, or both.
Before I jumped into this project, I felt it would be easy to
support the handful of character modes that the F256
offers; simply mask a VICKY master control register
($d001), then set or clear DBL_X and DBL_Y bits.
What I neglected to consider was the fact that changing
modes breaks general screen navigation and scrolling.
You can experience this yourself in SuperBASIC,
discussed in this YouTube video. For nanoEdit, it also
complicated resize and layout, so we had to compensate.
Citing one instance, status lines, a poor choice would be
to keep all indicators in columns 1-40, leaving the right
half of 80 character status lines empty. So we coded a
lightweight method to recognize a token (‘|’)to identify a
split point, which right justified text as needed.
The SpeedScript interface was sparse out of necessity. In
many ways, nanoEdit faces a similar list of constraints.
Feature cost; memory, CPU, coding, and refactoring time;
more than anticipated.
In issue #10*, I quoted Richard Mansfield, (the author of
COMPUTE!’s Machine Language for Beginners)
acknowledging that he grossly underestimated (by 4x) the
amount of time required to write his all-assembly game.
I'm not there yet, but I'm getting closer, and I don't like it.

Nov. 2023 / F11

1

for D
ennis

Grab issue #10 here if you missed it. It contains an important introduction to SpeedScript and a look at COMPUTE Publications.

As an added bonus, you’ll get to read a fun backstory behind a Dennis Hayes user feedback gripe (with Compute) and about his legendary product.

*

bo
nu

s

+

http://apps.emwhite.org/shared-files/782/?Foenix-Rising-Issue-10-2.pdf&download=1
https://www.youtube.com/watch?v=hvTRrvqURv0

2

Getting started: (a.) QR codes are fun (or are they)?
Thank COVID for making the QR code ubiquitous.
Every restaurant, at least in my part of the world, used
them. It must have been a boon for the printing industry
and for web hosting of online menus.
Today, there are free online QR generation sites such as
this one, and python libraries such as this one.
But how does one go about getting a code into a Foenix
machine for display on the screen as a ‘see more’ link.

The ‘easy’ way is to use a modern image manipulation
tool and some python code off-host to produce a load-
ready binary file or a sequence of ASCII .byte
statements converted to source code.
The low-budget way is to do what I did. Reduce the
encoded URL to the smallest feasible footprint (a 25 x
25 pixel QR type-no:119), model it on screen using the
Foenix Sprite Editor to test readability with varied
smartphones, choose a suitable color combination to
improve clarity, then, armed with a picture of the QR
code, recruit an unsuspecting child to read all of those
1’s and 0’s aloud while typing them into source code.
If they ask questions, it will open the door for you to
give an hour long lecture on vintage compute. Winning!
But joking aside, it took about 20 minutes to type in and
another 20 to fix mistakes. Next time: must. use. tools.

Nothing is easy
In a prior article, we mixed text and sprites in an RTC
‘am/pm’ clock tutorial (issue 6). It worked out well and
the result was pleasing. What I didn't realize at the time
was how uninformed I was in dealing with layers and
specifically, the fact that while sprites may be mixed in

and through layers of tiles and bitmap graphics, text is
always on top. I was successful using layers in issue 5,
when I bounced bitmapped rendered objects behind
sprite numerals, but suddenly, I was having trouble.
This was a different challenge: When the character
background color is anything but palette color 0
(transparent), none of the graphic objects behind the text
are visible and this doesn’t jibe with our desire to let a
CHROUT-style output routine obey color change and
reverse field attributes alongside a sprite use case.
Recall, the F256 does not have a screen color in the
traditional sense; there is no $d021 (Commodore 64)
background color. Instead, VICKY supports varying
screen colors per character, if desired.
I chased this around in circles for 2 evenings until I
recalled a conversation that Gadget, Stefany and I had
about a year ago. At the time, Micah (we sent a car to
find him) was crafting all of those lovely glyphs in the
F256 character set.
I was proposing a reverse field complement to the F256
set and Gadget insisted that the need could be satisfied
by manipulating foreground/background colors and she
was right; but the scheme produces an unwanted side
effect. With a colored background (which is opaque),
characters always block the sprite, bitmap, and tile
layers from being seen.
The fix; four choices:
a. Enable a bitmap screen and fill it with bits strapped

to a LUT of the desired background color, then
ensure that none of the characters have a background
color (their background LUT is all color 0). We will
still be able to provide the important [to the core
SpeedScript code] reverse field characters because
we created them within the default set.

b. Do likewise, except with a single solid tile and a tile
map across the screen. This will not require nearly
as much memory as the 64,000 byte bitmap.

c. Punch holes in the character screen (the spaces
directly in front of the QR code pictured) and choose
‘off’ bits that match the background color. We’ll
need to precisely align sprite x/y coordinates of the
32 x 32 pixel sprite (to that of the characters).

d. Use 15 redefined chars* instead, and juxtapose the
redefined chars to form the desired QR image.

Option ‘a’ and ‘b’ are expensive and require code and
data to setup and option ‘d’ is silly (but might be a fun
science project for a kids hackathon); So option ‘c’ it is.
The good news is we are only dealing with this QR code
business during the first run of the program. There is no
need to fuss about color parity between LUTs because
this environment is controlled and follows initialization.

11/2023 - F11

Desired effect - prototype of the nanoEdit startup screen

qr_sprdata .byte $01,$01,$01,$01,$01,$01,$01,$00,$01,$00,$01,$00,$01,$01,$00,$00
 .byte $00,$00,$01,$01,$01,$01,$01,$01,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$00,$00,$00,$00,$00,$01,$00,$01,$00,$01,$00,$01,$01,$00,$00
 .byte $01,$00,$01,$00,$00,$00,$00,$00,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$00,$01,$01,$01,$00,$01,$00,$01,$00,$01,$01,$00,$01,$00,$01
 .byte $01,$00,$01,$00,$01,$01,$01,$00,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$00,$01,$01,$01,$00,$01,$00,$00,$01,$00,$01,$01,$01,$00,$01
 .byte $01,$00,$01,$00,$01,$01,$01,$00,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$00,$01,$01,$01,$00,$01,$00,$01,$01,$01,$01,$01,$00,$01,$00
 .byte $01,$00,$01,$00,$01,$01,$01,$00,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$00,$00,$00,$00,$00,$01,$00,$00,$01,$01,$01,$01,$00,$01,$00
 .byte $01,$00,$01,$00,$00,$00,$00,$00,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $01,$01,$01,$01,$01,$01,$01,$00,$01,$00,$01,$00,$01,$00,$01,$00
 .byte $01,$00,$01,$01,$01,$01,$01,$01,$01,$00,$00,$00,$00,$00,$00,$00
 .byte $00,$00,$00,$00,$00,$00,$00,$00,$00,$01,$00,$00,$01,$01,$00,$00
 .byte. $00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00,$00

Resulting data (this is a quarter of it; 256 bytes of the 1K):

Why 15 characters and not 16? Because we can re-use the
vertical bar in the left pair of ‘finder pattern’ blocks if we right
justify the graphic. “… because every byte and cycle counts”

*

https://www.qrcode-monkey.com/
https://pypi.org/project/qrcode/

Now is a good time to point out that on the F256, char
color LUTs ($D800 of MMU_IO_CTRL bank 0) are
different from the general graphics color LUTs (which
reside starting from $D000 of MMU_IO_CTRL bank 1).
I’m mentioning this because coordination of text and
graphic assets will require duplicate entries. Here is the
manual excerpt for each:

(above) Text LUTs (note only 16 colors for foreground/background)

(left) Graphic LUTs (note: there are
four available, each with 256 slots
of 4 bytes each)

Here is the sprite graphic data load code; we discussed a
similar routine in prior issues:
sprinit lda #<qr_sprdata
 sta FROML
 lda #>qr_sprdata
 sta FROMH
 lda $80
 sta DESTH
 stz DESTL
 ldy #$00
sprloop lda (FROML),y
 sta (DESTL),y
 iny
 bne sprloop
 inc FROMH
 inc DESTH
 lda DESTH
 cmp #$04
 bne sprloop

Here the sprite meta-data instantiation code; we've used
this routine in the past as well:
 ldx #$00
sprattr_outer ldy #$00
sprattr_inner lda qr_sprattr,x
 sta $d900,x
 inx
 iny
 cpy #$08
 bne sprattr_inner
 lda qr_sprattr,x
 cmp #$ff
 bne sprattr_outer

That's all there is to it. We define the sprite, load it into
memory and instantiate it using a standard method.

(b.) Faking condensed text
Monospaced fonts are great and all, but it's a bit of a
stretch to use the adjective (monospaced) and noun
(font) as if we had a choice; all text on late ‘70s and
early ‘80s machines was monospaced. And they did not
have fonts, they had character sets. Eventually, the
Apple II and others ran Word Processors with limited
fonts for output, and some had on-screen rendering, but
not without heavy lifting which consumed resources.
nanoEdit is a text editor, not a Word Processor, but it
supports an 80 character screen by default. Press F8 and
you can instantly pop into a world of 40 x 30 text.
There are many cases where this is preferred. Offering
both complicates the desire to squeeze static text and
dynamic messages into one or more status lines.
Since the birth of the CRT, the goal has been to present
the user with a clean and intuitive interface; complete
(in this case) with useful data on status lines.
The text below on the left is a string of sorts; four
‘normal’ characters followed by a space and an asterisk
(noting that the file has not yet been saved), followed by
the word “untitled”. Look closely and you can see that
the text is a bit odd; you might even suggest that it is
proportionally spaced.

To prepare, we used Ernesto’s Foenix Character Editor
to create the ‘untitled’ text, and ultimately, to squeeze 6
characters with whitespace at each end into less than 4
and one half characters of ‘on’ bits (37 pixels in total).
We could have done this with bitmap graphics or tiles on

a color-matched
status line (per
item ‘a.’ above)
but text mode,
while mono-
chrome per
character, is 2x
the resolution
(640 x 480).
The approach
used is low
budget, but it gets

the job done and once the data is loaded into the set, we
can dispose it, and the load code (see item ‘c.’ below).

But it's not all peaches and gravy. This approach
contradicts a statement made on page 5 of Issue #10
where I boasted that we would not alter other glyphs or
try to recreate the Commodore PETSCII char set.

We will still honor the latter part of this agreement, but a
hard violation of characters numbered 6 to 31 was

311/2023 - F11

Note: addresses are in I/O bank 0

Note: these addresses are in I/O bank 1

‘ ’ indicates
that edits have

taken place
since last save

(modern!)

This line is the same width as as the line
beneath the ‘(^@) ’ to the left, however,

the text above is 4 chars vs 7 or 8.

Hmmm, I could have saved another pixel

between the ‘l’ and the ‘e’. Curses!

*

Hand drawn prototypes

required; first to create our newline character (ASCII
31, discussed last issue), but also to move and redefine a
number of line draw characters for dialogue box like
piece parts (around the help screen); to create an edged
vertical bar (where a centered separator felt too tight),
and above for the ‘text’ and ‘data’ editing mode labels;
the gratuitous ‘untitled’ label was just for fun; we
allotted 16 characters for a file name and easily could
have written this out in standard ASCII text.
At the bottom of this page, you can see a depiction of
our full character set. Init code does the dirty work and
a bank of high RAM saves the original set(s) for
restoration upon exit (an alternate character set and the
FON_SET feature will be used for data editing mode, to
be covered in the next issue).

How to place re-defined characters on the screen
Placing the new characters on-screen is as simple as
storing the ASCII value into screen memory at $C000
when MEM_IO_CTRL is equal to #$02. Our normal
screen output routine will not readily print these (since
non-printable codes are interpreted as cursor and color
controls) but we created a rawout vector, also to be
discussed in future. Here is the simple math:

$c000 + (row * scrnwidth) + column

nanoEdit uses F6 to toggle the edit mode and the
following code swaps the status line chars as needed
(for simplicity, this is a 40 column only example).
modetxtdat .byte $0b,$0c,$0d,$0e,$07,$08,$09,$0a

bumpmode lda mode
 eor #$01
 sta mode

updstat40 asl a
 asl a
 tay
 lda modetxtdat,y
 sta $c49c
 lda modetxtdat,y+1
 sta $c49d
 lda modetxtdat,y+2
 sta $c493
 lda modetxtdat,y+3
 sta $c494
 rts

‘Creating' our own reverse field chars, revisited
This code is similar to last month's example, however, is
one instruction shorter. The reason for the revisit is to
discuss convention. As you will see, it is somewhat
unconventional and/or can be considered incomplete,
unless you’ve played with this type of code, prior.

4

Execution absent the pre-req (see ‘a.’ below) will either
locked up your machine, or produce a screen full of
garbage or interesting colors.
Three matters to discuss on this topic:
a. the prerequisite - MEM_IO_CTRL ($01) must be set

to #$01; this exposes FONT memory to the CPU.
Often, this bank will default to #$00 (I/O addresses)
and depending on the type of app, screen update
intensive code might default to #$02 or #$03 for
ready access to the character or color matrix.

b. this code is self-modifying (versus using zero-page
indirect indexed addressing) - in the example, we
begin with two 16-bit addresses (source and target
for our font byte copy) initialized $bf00 and $c300
respectively. These addresses are useless until the
first increment (3rd and 4th instruction). The
routine loops ‘outer’ 4 times and ‘inner’ 256 times,
tallying 1,024 bytes of movement, indexed by y.
The fundamental difference from the original code
(issue #10, pg. 5) is we count down from 3 to 0;
versus counting up); this allows us to remove the
cmp #$04 and change the branch from a not-equal
(bne) to a branch-positive (bpl); We also move the
ldy #$00 to the top. The code iterates just the
same, but is one instruction and 16 cycles shorter.
Will the two bytes or 16 cycles matter? No :)

c. Importantly, this code is ‘single use’ - since it
modifies itself, it can only run once. We could
initialize it at the start, but if we wasted instructions
doing that, we could have just as well used zero
page indirect indexed. As you'll read below, this
code will be disposed of, so it won't matter.

fontrvs ldx #$03
 ldy #$00
fontouter inc fontinner+2
 inc fontupper+2
fontinner lda $bf00,y
 eor #$ff
fontupper sta $c300,y
 iny
 bne fontinner
 dex
 bpl fontouter
 rts

The most important thing to know about the F256
character sets is they require no additional memory
once defined. And VICKY supports two full 2K sets
built into one of the $c000 banks. For more info on this
topic (in a SuperBASIC context), see the following
YouTube video and the two that follow.

11/2023 - F11

ASCII values

This code takes the mode (0 or 1), shifts left
twice (mult. by 4), then transfers the product to
the y-register (offset into modtxtdat). Simple.

For illustration; if you
were trying to impress
your friends, you might
try a label def instead
of a series of hard
addresses, or better
yet, do some math
based on row and
column. But this works
as well!

The nanoEdit character set (for now) - appears mirrored through character 128, but ASCII 0 is missing (the British Pound sign is not included above);
this image was generated with the SuperBASIC CPRINT command which stubbornly refuses to print a ‘null’

We opted to stick with this Commodore’esque reverse field scheme so the core code could run as is. It also burns far fewer machine cycles to XOR
bit-7 of the char under the cursor than to shift color attributes to reverse foreground and background repeatedly.

As you’ll see next time, we use a different character set in ‘data’ editing mode; in the 2nd set, the ASCII chars appear in their rightful place, but we
replaced lower order glyphs with control symbols to remove the guesswork from visualizing byte values while editing binary files.

nicked
quid

https://www.youtube.com/watch?v=KK8YS5gafJ4

(c.) Burn after reading: a memory use discussion
nanoEdit could be thought of as a successor to
SpeedScript for the simple matter that it contains a core
of the original code. It also aims to meet several of the
same design objectives that were likely being discussed
in Compute's Raleigh, North Carolina headquarters:
1. speed (its in the name) - response time must not feel

sluggish. This was challenging back in ‘82 and it
still is. In our next issue we will touch up the text
store methodology, its limits, and how we improved
it).

2. functionality - the more utility, the better, provided it
does not get in the way of performance or contribute
to bloat. (while Brannon & co. sought to fulfill
word processing needs, nanoEdit is intended to be a
general purpose editor that will eventually grow into
an on-platform IDE). There is much left to do.

3. efficiency - it must fit in a small footprint, leaving
more memory for documents and data.
In addition (and just as SpeedScript did with
Commodore's R6510 location $01), nanoEdit takes
advantage of machine specific features such as
memory banking, the use of flash, and soon, DMA.

Ultimately, the project aims to encourage a wide group
of users to make nanoEdit part of their workflow and to
to co-exist with SuperBASIC.
nanoEdit also differs since it is built to execute from a
bank of flash memory, and since it stores its non-zero
page variable data in a clean RAM bank acquired at
runtime. Above all, the #1 design goal is to keep the
code within a single 8K bank of memory (SpeedScript
was ~6K).
Thankfully, the F256 is ~6x more performant by clock
speed than the original SpeedScript target platform (the
Commodore 64). But more features means more code
and we are still bound to a 64K address space.
To deliver on our goals, we will leverage a simple
compression algorithm and also, throw away a fair
amount of the startup data including the welcome
message, font sources, sprite data for the QR code, and
various bits of load and copy code. This approach is
less lofty, but not much different than a rocket launch
that leverages a booster stage to reach a certain altitude,
and then sheds aeroshells and other components which
are no longer required for space flight.
We’ll also do as SpeedScript did and leverage a startup
signature and code that sets, and (upon subsequent
execution) recognizes that initialization has already run.
SpeedScript did this to allow re-entry, meaning that if
you quit the program and returned back to BASIC, you
could return and re-start where you left off.
Because Charles Brannon seemed like a swell guy, we
will leverage his method in the form of the same byte
signature ($CB, his initials in hex) stored in a variable
called FIRSTRUN). We will use it as well.

5

We will also do as SpeedScript did and leverage a label
positioned just beyond the ‘keep’ code which is
important to the editor, but prior to all of the disposable
assets (code and data).
Here is how SpeedScript went about it:
SpeedScript used END to identify the start of memory
which followed its last variable; we used ‘CODEEND’.

Finally, we will unpack from flash into RAM in our
release version; this step is necessary because our flash
footprint is smaller than the sum of all of our code and
data. RAM is acquired from the extended pool, above
high memory at 01:0000, one MMU bank at a time.
Longer term, we will leverage the decompression
algorithm discussed below and will look to support
overlays (for an assembler, as one example). For now,
beta versions of nanoEdit will be distributed as
monolithic .bin files with accompanying Commodore-
linked ABI print and load/save routines. This is a
journey, not a sprint.
Otherwise, there is nothing else left to do. Part of the
SpeedScript initialization code (which is also used by
the erase text buffer command) will literally stomp all
over the code and data that exists beyond CODEEND.
For your records, here is a tally of data and code [so
far] that we will leave behind (2,952 bytes unpacked):
welcometext : text (1,450) : displayed once
spritedata : graphic data (1,032) : same
 sprinit : code (84) : same
fontinit : code (237) : run-once copy and move
returnchar : glyph data for above (128)
fontsources / fonttargets : table data (21)

A quick word on pack/unpack
A modest compression routine is in the works, derived
from a paper written by Tommy et al in 2018, published
in the Journal of Physics - Conference Series.
The algorithm uses a value differencing scheme which
we will adapt to leverage 64tass .lst files. More on
this next time. But if you are curious, have a look at the
pseudocode description on page 3 here, which we will
code simply in 65C02 assembly. The packing routine is
being written in Python to leverage the list output.

(d.) Cycling text using data and poked screen codes
In a humble brag on page one, I mentioned my
experience managing status lines in a program I wrote
on my childhood computer, a Commodore 64. Looking
at my code today (which I have in MAE source format),
I am impressed and embarrassed, simultaneously.

11/2023 - F11

Brannon’s scheme grabs the
high byte of END adding one
6502 ‘page’ to mark a ‘clean’
starting point for text memory.
His text end high byte is $CF
which is the last page of
Commodore 64 high RAM.

https://iopscience.iop.org/article/10.1088/1742-6596/1007/1/012022/pdf

I recently explained to Stefany that my 6502 coding
skills are equivalent to that of an undisciplined 17 year
old because I literally picked it up again about a year or
so ago, after not touching it for many years.
But a long career in Tech has taught me a few things.
So I am here to share an evolved form of that old code,
updated to be presentable as used in three features (see
callouts below).

Of course, there are differences between each of the
three features, but they are handled similarly. Each has
state-change code, screen-poke code, and follows
convention for efficient ‘use’ code.
State-change code: typically a stub or a short piece of
code responsible for toggling a byte or advancing an
index that tracks a setting. It is a good practice to
optimize code flow (see use). For the sake of
discussion, a state change is an update which is
typically (but not always) triggered by a user keypress.
Screen-poke update code can range from simple to
complex and depending on the type of feature and
importance of timing to an event loop, there will be
occasions to leverage pseudo-timers or interrupts which
defer or batch updates as we do in major item (e.)
below.
Example (1) in this part of the discussion merely updates
3 characters (‘OVR’ or ‘INS’). This code takes no time
at all to execute and is encapsulated in the keyboard
control loop (meaning, it will not be executed until
actuated).
The opposite of this type of feature is code that might
perform an expensive calculation or loop through
memory. In such cases, it’s best to defer until the
keyboard is idle or at worst, update every half second or
every few seconds. The “87%” highlighted in red is an
example of this, as you will see.

6

Use code, meaning the part of the program that will
read a value and act upon it.
Generally speaking, if the ‘test’ is in a loop where
performance is important, the value used should rely on
a binary 0, to fall through so the branch is less
commonly taken. The opposite of this is branching
more often than not, which will cost an additional cycle
(and potentially one more if a page boundary is
crossed). It would appear silly to open .lst files to
check and adjust page alignment, but it was a common
practice on early 8-bit realtime embedded systems.
SpeedScript drops the ball here. They set their default
typing mode to overwrite and in the code they leverage
the zero status flag for branch without a compare, but
then they branch by ‘default’ when they should have
done the opposite.
With the background behind us, let’s examine the
feature callouts on the left: (1), (2), and (3).
(1) Typing mode: Insert / Overwrite
SpeedScript’s core initializes to overwrite mode which
is toggled with CTRL-‘o’ (customary in ancient word
processors and screen editors). It also supports an
insert mode, however, operating in this mode has a
performance penalty* when working with large files.
SpeedScript offered no obvious indication of which
mode was selected but we will do as classic PC apps
did; with status line text.
State-change code:
instgl lda INSMODE ; mode variable
 eor #$0e
 sta INSMODE
 jmp updatestats

Screen-poke update code:
 ldx scrnpokeofs ; used in bumpdrive
 lda INSMODE
 beq ovrpoke

inspoke lda #’I’
 sta $c025,x
 lda #’N’
 sta $c026,x
 lda #’S’
 sta $c027,x
 bra done

ovrpoke lda #’O’
 sta $c025,x
 lda #’V’
 sta $c026,x
 lda #’R’
 sta $c027,x

Use code excerpt:
 :
 lda INSMODE
 bne notinst
doins jsr inschar
 pla
 cmp #95
 bne putchar
 :

11/2023 - F11

(1) Typing mode: “INS” for insert; “OVR” for overwrite; toggles
 (2) Device: “sd” or an IEC drive number [“08”.. “11”]; cycles

(3) Editor mode: Custom
char “text” or “data”;

Next issue, we will discuss they ins and outs of the insert problem.
You’ll know when your files are getting too large for comfort.

*

asserted rts

Action code, if orchestrated well,
will fall-through from the above test

Test

[

L
O
W

B
U
D
G
E
T

C
O
D
E

A
L
E
R
T

]

(Figure 1)

(2) Device: “sd” or IEC drive number
This setting, cycled with CTRL-‘d’, uses three tables
and two variables in an obvious way. Here is the data:
drvtxtl .text $00, 's', '1', '1', '0', '0'
drvtxth .text $00, 'd', '1', '0', '9', '8'
drvval .byte $00, 0 , 11, 10, 9 , 8

State-change code:
bumpdrive dec drive_idx
 bne grabdrive
 lda #$05
 sta drive_idx
grabdrive ldy drive_idx
 lda drvval,y
 sta drivenum
 jmp updatestats

Screen-poke update code:
drivepoke ldy drive_idx
 lda drvtxtl,y ; low or 1st digit
 sta $c022,x
 lda drvtxth,y ; high or 2nd
 sta $c023,x
 lda #$18 ; vertical bar char
 sta $c024,x

Use code excerpt:
dirload ldx drivenum
 bne sd_dir ; if drive is 0, SD
 lda #$01 ; else IEC setup
 ldy #$00
 jsr SETLFS ; equiv of 1,x,0
 lda filenamelen ; is 1
 ldx #<filename ; buffer of '$'
 ldy #>filename
 jsr SETNAM
 jmp LOAD ; loads directory

sd_dir ldx #FAT_INIT
 jsr SDCARD
 bcc _out

 lda #0
 ldx #FAT_CTX_NEW
 jsr SDCARD
 bcc _out
 sta fat_ctx

 ldx #FAT_CTX_SET
 jsr SDCARD
 bcc _out

 lda #0
 jsr SETNAM
 ldx #FAT_DOPEN
 jsr SDCARD
 bcc _out
 :

There is a-lot going on here, but the interesting part is
the state-change code and the data. We are cycling, and
therefore, iterate values (in this case, in reverse). 6502
dec and inc instruction are wonderful because they set
or clear the zero flag without a ‘load’.
When zero is encountered, we set the index to 5 to reset
it to the top of the array. In either case, we end up at
grabdrive which grabs the new drive number that the
use code can readily use.
There are several ways to do this, but we opt for a
simple index with data; best of all, drivenum is usable
without interpretation or a long string of compares. It’s
trivial code, but it’s efficient and easy enough to follow.
(continued on pg. 8 below)

7

A Nostalgic Detour - twice the code, 4x the fun
For old times sake, let’s examine the approach I took
when I was 18 years old, faced with similar requirements.
Life was simple back then, no SD cards to worry about,

and I had no clue how to
use compiler directives,
so I did it the hard way.
2348: DRIVE is checked
for 11 (the max) and if
so, reset to 8; else, branch
to DRCHN1 where DRIVE
is incremented.
2354: Note the JMP and
wonder ‘why!’
2356: DRIQUR calls
HEX2AS to clumsily
convert the DRIVE byte
to digits returned in x and
y (in case DRIVE is 10 or
11). ASCII 30 is added
and the screen is poked.
This is where I laughed
(in retrospect). I must
have had my “Mapping the
Commodore 64” book by
this time. How else did I
know that (2370) zero
page $02 was “unused”?
This was life in ‘84 or
‘85. Someday, I will
produce a YouTube demo
featuring my Terminal,
and I’ll be Commodore
famous!
Of course at this point I

can find plenty wrong with even this snippet of teenage
code. Regardless, I’m not sure I’ve ever been more
proud of a project of this magnitude, since. The blue line
numbers from VS Code on the left should give an
indication of the sheer amount of work involved. In total
it was > 4,000 lines of assembly language and data with
minimal comments (and no style).
Considering I was self-taught, had limited resources, and
was a freshman in College with only rudimentary dev
experience (PET BASIC 4.0 in 10th grade Computer
Math class and Pascal in AP Computer Science in 11th
grade), I still can’t believe I persevered and got it to
work. Equally shocking; I still have the .asm source.
To say that these works are akin to Richard Mansfield’s
all-assembly language game, would not be too much of a
stretch. To connect the dots backwards, it’s only been 2
years on either side of a 40-year slumber between my
being inspired by Richard Mansfield book, and today.
Time passes quickly. Do something useful with it, even if
it’s just for you. I hope that you are finding yourself on a
satisfying journey with your Foenix machine(s). I am.

11/2023 - F11

Initialized to SD

The blue box (indexed by
drive_idx) slides to the

left and rotates to position 5
(drivenum = 8)

x already contains the
scrnpokeofs from the

routine above; this adjusts
for 40 or 80 cols

[

G
A
D
G
E
T
’
S

H
I
G
H

B
U
D
G
E
T

C
O
D
E

]

(3) Editor mode: custom char “text” or “data”
Pressing F6 toggles the editing mode between two states
which dictates the editing behavior of nanoEdit. The
visuals and goal are similar to item (1) above, but there is
a key difference.
We are not poking printable ASCII text onto the status
line (such as the chars ‘I’, ’N’, ’S’ above); instead, we
are poking custom characters (glyphs) numbered in the
lower ASCII range. Traditionally, these characters are
not printable, but on the F256, this range contains an
organized collection of graphic characters which we
have redefined. Here is an edited (spun) view of
the .asm source glyph def.
It’s a bit like one of those mid-‘90s magic-eye posters:

.byte %01000001 00000000 10000000 01000000

.byte %10000001 00000000 10000000 00100000

.byte %10001111 00111001 11001110 00100000

.byte %10010001 00000100 10000001 00100000

.byte %10010001 00111100 10001111 00100000

.byte %10010001 01000100 10010001 00100000

.byte %01001111 00111100 10001111 01000000

.byte %00000000 00000000 00000000 00000000

Of course, we could grab each character using an
immediate mode lda as we did in the example above,
but there is a better way; a one dimensional array of
values (see modetxtdata below) and simple bit shifts
to multiply the 0 or 1 stored in mode by four (the length
of the glyph ‘string’). This value is transferred to the y
index and then used to grab values in the array. Best of
all, this method is also scalable should we add modes.
There is some complexity to deal with here; per design,
glyphs appear on the lower status line (not the upper
where addresses are absolute, always starting at $c000).
On the lower line, we not only have to adjust for the
number of columns (40 vs. 80 as we did above), but
we’ll need to adjust vertically, to account for the
difference between the 30th or 60th row.
Computing the address would normally take some
doing, but we will leverage a rewritten version of the
classic PLOT routine, named SCRNADDR.
The OpenFNXkernal version PLOT uses bitwise math
(asl and rol) in a tight, single-pass routine. It works
well and is efficient, but only supports an 80 x 60
screen. Commodore’s PLOT used a table of address
values and some logic to account for the inevitable 80
character long logical line (despite a fixed 40 x 25
screen). We’ll lean towards the latter, but code it
simply. More on this next time.
Here is the editing mode glyph data:
modetxtdat .byte $0b,$0c,$0d,$0e,$07,$08,$09,$0a

State-change code (suitable for 2 modes as written):
bumpmode lda mode ; mode variable
 eor #$01 ; will be 1 or 0
 sta mode
 jmp updatestats

8

Screen-poke update code:
 lda mode
 asl a ; first shift is x 2
 asl a ; second is x 4

 ldx #20 ; x coord
 ldy scrnheight ; y coord (29 or 59)
 jsr scrnaddr ; returns address
 stx TEMP ; re-use of zp pair
 sty TEMP+1 ; indirect indexed

 tax
 ldy #$00
modetxtloop lda modetxtdat,x
 sta (TEMP),y
 inx
 iny
 cpy #$04
 bne modetxtloop

Use code excerpt:
 :
 lda MODE
 bne hexdisplay
 inc columnnum
 :

The ‘use’ code is not important; simply, the lines
highlighted in yellow are all we need to do in order to
act upon the setting. The default value, optional
branch, and fall-through nature is optimal. Per our
prior discussion, we bne without the need to compare
for our default use case (normal editing).
Throughout nanoEdit, we employ these techniques
frequently. In one instance, we populate and indirect
jmp vector, to prevent having to constantly check and
branch; elsewhere, the code above is used simply.
In summary - the big deal
There is no big deal or ‘aha’ moment here. Being
consistent and reusing code that is easy to modify and
works can help transform a mundane task into
something between fun and challenging, and ultimately,
satisfying. That's the point.
In an earlier issue, I took a stab at distilling the joy of
being a 6502 programmer. It continues to be a learning
experience for me; something between art and science.
The fact that our platform is in its infancy and offers a
wealth of graphics and audio features keeps it
interesting.
With [now] four different CPUs in my collection of
Foenix machines (the latest being the FNX6809), I’m
most comfortable on the F256 but will be shifting gears
to the A2560 family sometime next year. It will be a
challenge for me, but I’ll be back.
I hope to release nanoEdit in beta form by years end,
but a Christmas demo keeps trying to lure me away.
nanoEdit looks nothing like my original minds-eye
view of what it would be and in this case, it’s a good
story. Feature development and refinement yields a
better product.
What are you working on? Reach out through the
Discord newsletter-appstore channel or via DM. I’d
be happy to write an article about one of your projects.

11/2023 - F11

ascii $0b ascii $0c ascii $0d ascii $0e

to be discussed
next issue

Calculating percentage of two 16-bit unsigned values
It's not obvious, but despite trying to keep nanoEdit
‘light’, we borrow from classic editors such as vi
(sorry) and Emacs (Gadget, don’t get your hopes up!)
In this article, we replicate a feature of the latter and
leverage 16-bit division in the process.
The ‘text' editing mode includes a ‘%’ numeric on the
lower status line representing the cursor position.
Calculating this should be simple (for a 5th grader):

cursor position aka byte offset from start ÷ filesize

Here are two examples in the context of our use case:
a. cursor at the 33rd position of a 252 byte file; so 33

divided by 252 = .1309 = 13%. Simple…
b. cursor at 60,731 of a 65,535 byte file. The answer is

.9266 or 93% if we round up. Easy right? Nope,
not for an 8-bit system.

The 6502 cannot divide natively. Instead, we will need
to employ looping subtraction, ideally carrying the
remainder forward. But it gets worse…
The literal translation of percent is “per 100” (but
natively, our machine is integer binary), therefore, the
quotient will always be 0 and the remainder will always
equal the numerator; that's not very useful.
To get around this, we could change our approach and
use two division calculations as follows:

cursor position in memory ÷ (calculated filesize ÷ 100)

Would BCD will help? Well, it would, but setup is
complicated and each next digit of precision is another
run through the gauntlet, which consumes clock cycles.

From a design perspective, placing such an indicator on
the status line establishes an assumed contract: users
expect real time updates. Unfortunately, this is
exacerbated by the fact that humans can type at a rapid
rate, and this leads to interface latency.
We need performant division. We could consult stack
overflow or GitHub, but instead, we will look to an old
friend: “6502 Assembly Language Subroutines”, by
Lance A Leventhal. It hasn’t disappointed yet.
After typing in the code (pg. 240-248) and pruning
unneeded subroutines (signed portions), we are left with
the following code. Never mind that the type is small,
the point is, that this runnable excerpt will require > 128
bytes of memory. (the full routine which would have

Div #1

included signed division code, weighs in at 293 bytes
plus an additional 13 bytes of variable data):

Based on the doc, this routine consumes upwards of
1,160 cycles. On a 1 MHz. CPU, this can be significant.
On a 6.29 MHz. CPU, it also could be!
How? Because an 80 x 60 screen is more than 4x the
size of most 1980s systems, and because the core
SpeedScript code recalculates and redraws the screen
constantly (every 1/2 a second or cursor flash), so the
CPU is quite busy.
How can we implement this 2-step formula given what
we've already discussed and still retain some level of
performance?
Now is a good time to reintroduce you to VICKY. She
is here to help:

Math Block - What is it and what is it good for?
Three things to know:
1. [similar to other VICKY features] it saves cycles and

code by greatly accelerating workload that was
traditionally difficult and expensive on 8-bit CPUs.

2. It is simple to use; just plug values into registers
(memory locations) and read the result; before you
even begin to setup your own code to measure
performance, your answer is ready to be read (within
a 6502 clock cycle or two).

dvsor .word ?
dvend .word ?
 .word ?
retadr .word ?
rsltix .byte ?

udiv16 lda #0
 beq udivmd
urem16 lda #2
udivmd sta rsltix

 ; save return addr
 pla
 sta retadr
 pla
 sta retadr+1

 ;get divisor
 pla
 sta dvsor
 pla
 sta dvsor+1

 ;get dividend
 pla
 sta dvend
 pla
 sta dvend+1

 ; perform division
 jsr udiv
 bcc divok
diver jmp erexit
divok jmp okexit

; unsigned division
udiv lda #0
 sta dvend+2
 sta dvend+3

 ; check for div by zero
 lda dvsor
 ora dvsor+1
 bne okudiv
 sec
 rts

okudiv ldx #16
divlp rol dvend
 rol dvend+1
 rol dvend+2
 rol dvend+3

chklt sec
 lda dvend+2
 sbc dvsor
 tay
 lda dvend+3
 sbc dvsor+1
 bcc deccnt
 sty dvend+2
 sta dvend+3

deccnt dex
 bne divlp
 rol dvend
 rol dvend+1
 clc
 rts

erexit lda #0
 sta dvend
 sta dvend+1
 sta dvend+2
 sta dvend+3
 sec
 bcs dvexit

okexit clc

dvexit ldx rsltix
 lda dvend+1,x
 pha
 lda dvend,x
 pha
 lda retadr+1
 pha
 lda retadr
 pha
 rts

911/2023 - F11

A heavily edited [but runnable] excerpt of UDIV16, an unsigned division
subroutine as published in Leventhal & Saville’s “6502 Assembly

Language Subroutines” - Osborne/McGraw-Hill 1982 Div #2

The goal is to estimate* the % through the file being
edited (highlighted in red)

x is the
column
number

https://archive.org/details/6502_Assembly_Language_Subroutines/page/239/mode/2up

①

⑦

We will store the result in a new variable, a 16-bit
variable called memused. Here is the code:
compute_sz stz memused+1

 lda LASTLINE
 sec
 sbc TEXSTART
 sta memused

 bcs noborrow_sz
 lda #$ff
 sta memused+1

noborrow_sz lda LASTLINE+1
 sec
 sbc TEXSTART+1
 clc
 adc memused+1
 sta memused+1

May as well acknowledge here that the lda #$ff is
unorthodox. The intent is to engineer a ‘borrow’ by
artificially creating a -1. By using a 255 in the high
byte of memused, an add of the difference between
total and beginning of memory permits the high-
order borrow to manifest correctly. Below, we do the
same with the next calculation.

- Next: compute the cursor position within the file or
document; SpeedScript tracks the cursor position in
memory in CURR (another 16-bit .word). To solve
for the percentage, we will need to compute
memcurr, it will contain the offset into the total:
compute_cu stz memcurr+1

 lda CURR
 sec
 sbc TEXSTART
 sta memcurr

 bcs noborrow_cu
 lda #$ff
 sta memcurr+1

noborrow_cu lda CURR+1
 sec
 sbc TEXSTART+1
 clc
 adc memcurr+1
 sta memcurr+1

The following is a walk through of compute_cu from
beginning to the end. Step numbers are inserted above
assuming no borrow. We begin with telemetry on the
left, and will end with a computed memcurr in blue.
This scenario is based on the screen shot on page 6.
The upper status line contains two 16-bit hex values
representing the calculated cursor position $015F and
the calculated document size $01E1 poked to the
screen for debug* purposes). The choice of $0800
below is arbitrary, but not unrealistic.

 TEXSTART memcurr memcurr
 $00 $08 $5F $00 $5F $01

 LASTLINE accumulator accumulator
 $E1 $09 $5F $09

 CURR $00 $08
 $5F $09 $5F $01

(sta after adc
in)

3. Use it or lose it! HDL code within FPGAs consume
gates which are limited in supply. Hardware
designers (Stefany, in this case) often add features
and refactor code; a perceived lack of interest in a
particular feature can lead to its untimely demise!
Fallen brethren included signed math functions and
tragically, the "Bitmap Coordinate Math Block”;
returned a bank number and offset of an identified
pixel of a bitmapped screen. In a future article, we
will highlight this forgotten/expunged feature and
discuss an algorithm to perform this function using
other parts of the Math Block.

Here are the basics on how to use unsigned division
using 140009 B0 which was released in late August.
Addresses change over time so if you've printed the
doc, be sure that what you have matches the code level
(noted on SuperBASIC’s start screen as “hardware”).

The F256 includes a built-in math coprocessor for
integer math. This coprocessor provides fast 16-bit
unsigned multiplication and division. As well as a 32-bit
adder. The use of this coprocessor is straightforward:
both operands are written to the appropriate registers
and then the result is read for the corresponding answer
register. The math units are completely separate blocks
using separate registers, so they function independently.

Implementation details
We will need to perform some setup using 16-bit
subtraction in order to prepare the inputs for the Math
Block. Let’s examine two near-identical pieces of code:
- First: compute the document size in memory; above,

we talk about the size of a ‘file’. In reality, we are
talking about a document in memory. The data we
need for the division calculation is derived from pairs
of 16-bit variables that the original SpeedScript code
defined as follows:

 TEXSTART .word ; start of memory
 LASTLINE .word ; end of memory
 CURR .word ; cursor (current)

To determine the size of the document, we will need
to subtract the memory address of the first byte of
document memory, TEXSTART, from the last byte of
memory used, LASTLINE. These are SpeedScript’s
variable names hence the upper case and peculiar
naming :)

1011/2023 - F11

Unsigned Division registers and narrative from Peter’s documentation

1
2

3
4

5

6

7
8

①

③ ⑥

⑦

f②
f④ f⑤

(sbc)(sbc)

(adc of $00
from)

f⑧

(after branch)

Step 5

3 important variables,
leveraged for our purposes;

(from SpeedScript code)

Assembly Language: fun for the whole family !!

--

stay tuned! memused and memcurr will receive a
promotion and get their permanent spot on the status
line of nanoEdit’s ‘data’ mode, discussed next issue

*

The great divide
Now that setup is complete, we will load VICKY’s
registers and perform two division operations, necessary
per the discussion on page 9.
The code below calculates a coarse percentage using
two unsigned 16-bit divisions and the Math Block; the
result is subsequently converted into printable characters
for the percentage shown on the status line (pg. 6 fig. 1).
Additional code (not shown) replaces the numerals and
‘%’ character with “Top” or “Bot” when appropriate.
The quotient from “Div #1” is used as a denominator for
“Div #2” and the final answer is deposited in QUOU_LL
and QUOU_HH, then passed to hex2asc (not shown).
calcpercent lda memused+1
 sta DIVU_NUM_H
 lda memused
 sta DIVU_NUM_L

 stz DIVU_DEN_H
 lda #100
 sta DIVU_DEN_L

 lda QUOU_LH
 sta DIVU_DEN_H
 lda QUOU_LL
 sta DIVU_DEN_L

 lda memcurr+1
 sta DIVU_NUM_H
 lda memcurr
 sta DIVU_NUM_L

As cautioned, this is a coarse percentage; we lose
precision by ignoring the remainder and a chance at
further refinement, but this example data (from pg. 9)
works out well enough. It is few percentage points off,
but is acceptable.
We could improve the math by rounding the result of the
first division (rather than taking the integer) by inserting
a small amount of code at the blue ‘>’above. We’ll just
compare the remainder (only the lower byte is needed)
with 50 and branch accordingly, we’ll either add 1 to the
low byte of the denominator, or not; *or* we could add
complexity with a different formula altogether.
There are always tradeoffs to consider. On one hand,
Math Block greatly simplifies our code, but on the other,
we should be wary that without further action, we will
execute whatever calculation we come up with every
time a key is pressed, otherwise known as often.
SpeedScript’s code leveraged a Commodore 64 specific
jiffy register to flash a fake cursor and squander the idle
time between.
nanoEdit does something more primitive but better, and
it will never get in the way of typing.
It works as follows: if we see that there is no key
waiting to be serviced, we inc a variable and then bne
back to the keyboard ‘get’ routine if < 256.
The net effect is, as long as the user is typing rapidly, the
update code will not execute, but as soon as they pause

numerator

denominator

252
100 = 2 R 52

denominator

numerator	

33
2 = 16

Div #1:

Div #2:

Quotient in QUOU_LL

and QUOU_HH;
remainder is

 ignored vs. 13%? meh

(ex. ‘a’ on pg. 9)

1111/2023 - F11

>

(even the slightest bit) the update takes place. Here is
the code:
wait jsr GETIN
 bne keypress ; service keystroke
 inc telemcounter
 bne wait ; if not 256 (zero)
 jmp (telemupdate)

Two matters to highlight. First, the absolutely minimal
amount of cycles that are added after each consecutive
empty keyboard buffer scan.
When nothing is pending, 8 cycles are consumed
(incrementing telemcounter) before the keyboard
buffer is checked again. After 256 iterations of no
keyboard activity (or about 2,048 cycles) the onscreen
counters are updated.
In 40 x 30 mode, status line values update continuously
despite nonsensical rapid-fire typing. In 80 x 30, the
screen update code places enough stress on the system
to back up the keyboard buffer, forget about this
telemetry code; so the desired effect is realized.
There is more to do in this category, such as to develop
a methodology to count newline characters (lines)
(SpeedScript has no such telemetry), to manage a timer
for auto-save, and to check for SD insertion events, but
that comes later. This method suits our needs for now.

Next time
All I can promise at this point is… more. In addition to
a few of the to-be-continued items from this issue, we
have a dual-charset dialog box routine to discuss, the
pack/unpack compression methodology, and the
nanEdit “data” mode, which is a large topic by itself.
We've also got an article authored by Ernesto Contreras
on the way entitled “Illustrating 8-bit dreams…”

A TinyByte - Wozniak's 6502 Floating Point code
Part of my job is research, and while working on code
and material for this issue, I couldn't help but dive into
a piece of work published in the very first year of Dr.
Dobb's Journal (one of my favorite vintage resources).
In August of 1976, Woz co-authored an article for Dr.
Dobb’s along with a Stanford Ph.D student named Roy
Rankin entitled “Floating Point Routines for the 6502”.
The article portion is nothing more than a brief intro,
written by the editor but it’s followed by an extremely
dense code listing (with copious comments), as was
Woz’s style. The article indicates that Woz wrote all of
the Floating point functions and Rankin, the supporting
routines including EXP, LOG, etc. The text captured in
the screen shot on pg. 6 above is from the editor of the
piece, presumed to be Jim C. Warren, Jr.
I own the first six seminal volumes from the Hayden
Press compilations. They are priceless. (Volume 7
begins with the PC revolution) Lucky you, they are
available on archive.org. Here is a direct link to the
article; have a read, type in the code, and party.

https://archive.org/details/dr_dobbs_journal_vol_01/page/n207/mode/2up

	Nov. 2023 / F11
	(FLASH!)

