
la
st

 is
su

e
ne

xt
 is

su
e

/ l
at

er
th

is
iss

ue

This article contains no shortage of nostalgia. We discuss the state of word processing
in 1984, one man and a publication’s efforts to change the game, and ultimately, the
reason why we are dusting off 40 year old code for integration into a Foenix Retro
product. Yes, we’re talking about COMPUTE! Publication’s SpeedScript, written by
Charles Brannon, an essential piece of their magazine and book publishing history.
We will conduct a deep dive into the inner workings and features of SpeedScript
including discussing the work required to port it to the F256 to suit our selfish needs.

(FLASH!)

Re-use, recycle, reduce: dusting off and improving an early example of free software

PaperClip, Word Pro, HesWriter and others were reaching
the peak of their ‘paying’ distribution potential and
software piracy was rampant. SpeedScript was feature
packed and grew a large fanbase; so large that retro
enthusiasts today still speak fondly of it.
In this issue, we will dive into Charles Brannon’s
SpeedScript platform including an internals discussion
and our plans to repurpose some of the code for our own
on-platform, native editor for the Foenix F256.
If you missed the last issue, here is a recap of what we've
done so far and where we are heading:
✓ Write a memory examination utility from scratch, but

tailored for the F256 platform. We will do so in support
of a fork of a kernel environment that is also being
developed; stay up to date on my YouTube channel:
8-Bit Wall of Doom) for more insight.

✓ Take Steve Wozniak’s original Apple I disassembler as
published in Dr. Dobb’s journal, and port it to the F256.

✓ Port and integrate Charles Brannon’s SpeedScript editor
(because it is tiny, refined, and well documented) then
discuss planned [and completed] enhancements.

• Modernize our disassembler to recognize the full WDC
65C02 instruction set (8 new instructions plus added
addressing modes for the original MOS6502 opcodes).

• Port and integrate a File Manager with ‘launch’
capabilities from my own 6502 Source code (1986)

• Consider if a simple version can run under TinyCore/
MicroKernel and discuss what a minimum viable kernel
ought to include from a services perspective.

It’s worth noting that the functionality detailed above has
yet to address the merging of this code with an enhanced
version of the OpenFNXkernal (discussed on the 8-Bit
Wall of Doom YouTube channel), but that will come later.
For now, we will maintain focus on delivering the MVP
of our editor (a fork, if you will, of SpeedScript), finish
the disassembler code, and subsequently, tie-up load and
save features (which are numerous and will be discussed
at length in future; the detail is important).

Word Processing circa 1984
In October of 1983, Microsoft released Microsoft Word
version 1.0 for DOS. It was an early example of
WYSIWYG and despite Windows not yet being invented,
it supported a mouse; Of course in this early day, what
you saw was = to what you got on output; it only
displayed bold, italics, and underline text; fonts were not
yet supported on-screen and proportional spacing had a
ways to go.
In November of 1983, PC Magazine distributed a DOS
demo version of Microsoft Word on diskette and it was
included with the periodical making PC Magazine the
first publication to do this sort of thing large scale.
Meanwhile, in the land of 8-bit microcomputers, scores of
word processors were evolving and students and
professionals world-wide were seeing real productivity
boosts. This pace would continue for years to come.
The Word Processor was an early example of a killer app
for home use; a panacea for households wealthy enough
to afford a computer and an inexpensive dot-matrix
printer loaded with tractor feed paper.
EasyScript for the Commodore 64 was my first foray in
this area (and probably the only reason any of my
schoolwork made it across the finish line); numerous
products borne from CP/M platforms right up to the big
daddy of native typesetting tools on Unix Systems were
being iterated upon at a rapid rate.
It was by this time that COMPUTE! magazine, already
dominating the home computer serial publication market,
endeavored to create a lightweight, zero-cost application
distributed as machine code along with a near-foolproof
data-entry system (MLX) for 8-bit platforms.
There must have been a debate over whether the release
of a viable software ‘product’ in this particular vertical
would be balked at by advertisers that paid Compute
Publishing's bills; but by the time SpeedScript was
released, ABC Publishing owned the publication and
subscribership was approaching 500,000! By the time
SpeedScript 3.2 was released, numerous titles such as

Sept. 2023 / F10

1

/

https://www.youtube.com/@8-bitwallofdoom
http://www.woz.org/about/

2

Retro Flashback: “A COMPUTE! Books Publication”
These words adorned the cover of dozens of books in the
1980s; treasures for young and older computer hobbyists
across 8-bit platforms and beyond. The average
publication weighed in between 250 and 350 pages and
included scores of type-in programs, tables, teachings,
and inspiration. Many of us had a collection. They were
the ‘80s equivalent of the O’Reilly Press books that IT
professionals stockpiled in the ‘90s.
In the early years, books of this nature tended to be
highly edited compilations of magazine articles (see
Assembly Lines) but soon, publishers were investing in
new and highly focused content of all kinds. The bad
news is that all are out of print; the good news is that just
about all of them are available on archive.org and there
is plenty of stock on the resale market at reasonable cost.
Two of my favorites were Mapping the Commodore 64
(1984; Sheldon Leeman) and Machine Language for
Beginners (1983; Richard Mansfield).
’Mapping’ is a well known and an indispensable
resource for 8-bit ATARI, Commodore (VIC, 64, 128),
and even the IBM PC. And while I haven’t seen all of
them, those that I’ve had access to convey not only the
‘what’, but the ‘why' (important) and the ‘how’ (to use).
But to me, Mansfield’s ML for Beginners book is the
most special because I thank its preface for inspiring me
to immerse myself in assembly language at a young age.
The book begins with a simple premise: “Something
amazing lies beneath BASIC”. And across the next two
pages, the author’s own experience learning 6502
Assembly Language is discussed including detail of his
investing ~80 hours (3-4x longer than his estimate)
writing his first large scale, all-assembly language
program. The passage triumphantly concludes:
“I am probably more proud of that program than any

other I've written.”
Of course, Mansfield was not talking about a Word
Processor, he was referring to a space-invader style
shooter, complete with rows of aliens, sound, and more.
After working at Compute Publications, Mansfield went
on to write dozens of books, many related to Visual
Basic, .NET development, and other Microsoft products;
have a look on Amazon for a partial view of his work.
I trust that he is well. He should be ~77 years old by
now and based on my research, was last interviewed in
2016 when he shared a few tidbits about his life
including the fact that he was an English major. Upon
leaving College, he felt he only had two options for
employment: “teach or write” and he couldn't see
himself teaching. I’m sure I speak for many when I say
that the industry was better thanks to his contribution.
My first machine language code was more modest (6
bytes). It was entered 15 minutes after I returned home
from buying his book and it blew my mind:
 >C000 EE 01 D0 4C 00 C0 (anyone?)

Enter (and entering) SpeedScript
In 1985 Compute Publications released a Charles
Brannon book, compiled to support their highly
successful SpeedScript Word Processor campaign.
The book focused on version 3.1 for the original
platforms, the Commodore 64 and VIC-20, and it was
short compared to other titles (about 165 pages).
The first 30 pages are quite useful. Chapter 1 introduces
the basics and discusses features, describing the theory
of use. Recall that in 1984 and 1985, Word Processing
was a relatively new frontier for many users and the
conventions that we've now grown accustomed to such
as ctrl-right for next word, END key for end-of-line, etc.
were not yet established. The text conveyed the
mechanics of “how to use” in addition to why a given
feature was significant. The bad news was, on-screen
help was non-existent and there were no menus.
To add to the challenge, each application in the early
days had a different command scheme which diverged
further between ports of the same software across
platforms. Some programs (SpeedScript was one)
leveraged CTRL-shifted keys and function keys; others
used a combination of meta-keys including the
Commodore key. In short, the first section of the
SpeeddScript book is a required read if you plan on
using the platform as delivered. It’s also a required read
if you have any hope un understanding the code, should
you wish to enhance it, as we will.
Chapter 2, on the other hand, is about a useful as a
chocolate teapot. It is 60 pages in length and is 100%
focused on Compute’s [then] new data entry utility,
MLX, including data. For those unaware, MLX was an
improvement over the ‘old’ way of entering machine
language: poked bytes from data statements. It included
a checksumming system which made data entry nearly
foolproof (that is, after you've keyed in and corrected
about 100 lines of BASIC code, the MLX utility, itself!).
For our purposes, the interesting portion of the book
begins on page 95 and is titled “Commodore 64 Source
Code”. After two pages of intro material, 30 pages of
impossibly small assembly code follows. And it is laid
out two columns per 1/2 sheet sized paper with
occasional comments. (see the bottom of pg. 6)
I typed it in; slowly and painfully over the course of
three evenings until my eyes were bleeding. In total, I
keyed in ~2,000 lines of source before familiarity led
me to realize I could omit sections of code that I had no
use for. The experience was a bit like reading a book for
the first time, knowing how it would end. This
realization probably saved me about 1,000 lines of
typing!
The book concludes with 4 pages of an add-on/mod
called “ScriptSave” which saves the document in
memory every 10 minutes. This is followed by a cut-out
function key template, a cut-out Quick Reference card,
and a cut-out cheat sheet containing the print formatting

09/2023 - F10

https://en.wikipedia.org/wiki/O'Reilly_Media#/media/File:ACM_OReilly-Rainbow-large-flash.jpg
https://ct6502.org/product/assembly-lines-the-complete-book/
https://www.amazon.com/stores/Richard-Mansfield/author/B0034Q04I0?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true

commands. Then there is a single page index and 8
blank pages headed with “Notes”.
Coding style, features, and ‘undoing’ Commodore
Brannon’s code reminds me of
my own code from 1984;
meaning, it’s amateurish. Labels
are oddly named and there is a
lack of comments except by
major section.
It’s not much different than the
BASIC code that found its way
into magazines and manuals in
the early ‘80s. You’d think that
editors would have renumbered
lines or cleaned up code for
clarity before publishing and of
course, you would be mistaken.
My absolute favorite classic
example of this was cited in
issue #1 of this Newsletter,
reprinted on pg. 7 below. See
the footnote where I exclaim:
“Come on Commodore!”.
From a functionality and design
perspective, Brannon
incorporated some unusual
features coupled with a few
absolutely brilliant ideas. An
example of the former:
Pressing shifted RUN/STOP inserts 255 spaces by
calling the LOTTASPACES subroutine. Of course*.
Meanwhile, CTRL-X transposes the current character
with the subsequent character. Why would you want or
need such a feature? I suppose if you routinely typed
received as recieved; assuming you bothered to move the
cursor left two spaces this would be handy?
Then there’s CTRL-A which flips alpha case, not of the
current word or highlighted passage (the concept of
highlighting did not exist), it only worked on the
character under the cursor. Again, quicker to type a
backspace and the character you really wanted.
On the other hand, SpeedScript was indeed built for
speed (footnote below, aside). An optimized screen
update routine (REFRESH) does its thing every cursor
flash whether data has changed or not. How does it get
away with updating up to 1,000 characters twice a
second? By avoiding kernal routines such as CHROUT
and instead, rendering text directly from stored screen
codes (at least in the Commodore versions).
Screen codes are values that are POKE’d into screen
memory. By avoiding all of the PETSCII conditionals
that would otherwise test for reverse field, cursor
controls, color attribute change, etc. tons of clock cycles
are saved. Anything multiplied by 1,000 turns into a big
number!

Another somewhat progressive design decision was to
save document text in this native screen code format and
do so directly with a kernal routine (SAVE) as if the data
was an executable program. By doing this, Brannon
greatly reduced the amount of code required and
provided the benefit of allowing a direct load, again,
with zero added code. The scheme only required a
SETLFS, SETNAM, and a LOAD strapped with the
appropriate memory address which was either the start
of text memory or at a chosen insert point. Smart.
There were also a number of oddities thrown in.
Brannon felt it necessary to leverage a raster interrupt on
the 9th visible scan line to create a colored status and
command bar that was a different color than the rest of
the screen. He also injected some unusual error trapping
code which dual purposed a saved character color to
identify state.
The port to the Foenix F256 platform was relatively
straight forward once all of the Commodore 64 memory
dependent code and subroutines were removed. This
also included routines which were not desirable for our
use-case such as printer driver code, the print formatting
scheme (headers, footers, and margins), NMI code, a
custom IRQ shim, the RUN/STOP trap, Jiffy clock
tracking, the list goes on.
This work reduced the memory footprint from ~6,158
bytes to less than 4K (4,048 byes) for the bare bones
version. But don't worry, we will build it back up by
introducing improved editing features, on-screen help,
and get us set up for functionality that dovetails nicely
into our intended target platform; nanoCLI, which is
rooted in a Commodore-like kernel.
Ultimately, our goal is to support Foenix specific
features such as the 80 x 60 text mode, to potentially
build in a rudimentary editor-driven assembler function,
to possibly support copy/paste with split screen editing,
but also to fit within an 8K FLASH bank such that
residency is possible, recalled by a single keystroke.

Planned Foenix F256 specific changes
Since we borrow the codebase from SpeedScript, our
version (nanoEDIT) will have a similar look and feel. It
will leverage a top of screen reverse field status bar for
displaying information such as ‘free memory’, for entry
of search terms, or program load/save parameters. But
we will add a lower status bar (line 30 when in double-
high mode or line 60 otherwise). The lower line
displays the line and column number, whether in ‘insert’
or ‘overwrite’ mode, the percentage through the file, and
other information.
We've also completely re-worked the command key
structure so features bound to function keys are common
to other nanoCLI features. The revamped CTRL key
map also has added functions and a handful of
reassigned keys that are closer in behavior to modern

309/2023 - F10

there is actually a very good reason why you might need
this function on a 1 MHz. system. See page 6 (epilogue).

*

text editors. The table on the following page summarize
the growing list of functions with just a pair of
commands on the drawing board (in grey), not part of
our minimal viable version.
Note the ‘*’ which indicates an original SpeedScript
feature that we may or may not have bound to a
different key.
CTRL plus:

@ = help or special command
^ = move start-of-line (or ‘a’)
$ = move end-of-line (or ‘e’)
b = border & screen color increment*
c = copy to kill buffer (W, S, B, E)
d = delete (W, S, B, E) to kill buffer*
h = hunt*
i = tab for movement (or TAB key to insert)
l = character color*
o = overwrite / insert toggle*
p = paste kill buffer
r = redo
s = search with replace
u = undo
= = mem remaining / consumed, and stats*

HOME followed by:
HOME = start of doc (jump to)
END = end of doc (jump to)
LEFT = start of screen line (same as ‘^’)
RIGHT = end of screen line (same as ‘$’)
UP = top of screen (upper left)
DOWN = bottom right of screen text
(any other key escapes)

shifted-HOME = clear memory (w/confirm)*
cursor keys, delete, DEL, INS keys as you would expect

Function Keys
Of course there’s a function
key template! No self
respecting ‘80s application
should be without one.
In our case, however, what
you see to the right is just a
prop. The F256K has
standard sized keys for this
purpose and those using PS/2
keyboards have the
traditional row which extends
F1 through F12.
Regardless, the depiction to
the right is accurate as of the
current version in build. With
a fair amount of work still left to do, we will cover these
feature details as additional functionality develops.

More SpeedScript internals: The Cursor conundrum
The Commodore kernal has a handful of vectors and
functions that depend on zero page addresses and timers
in order to enable and track the familiar blinking cursor.

4

It is important to consider that a cursor is a logical
entity, pointed to by x and y counters representing the
location where the next char will be written. Of course
this requires math in order to compute screen memory
addresses and that costs machine cycles.
Print control routines affect counters based on the type
of character being printed such that backspace, cursor
controls, clear screen, and printing off the edge of the
screen are accounted for differently.
To illustrate this behavior with a simple example,
consider the act of clearing the screen by printing a
CHR$(147) and subsequently printing the letter ‘A’.
You might print this from Commodore BASIC with the
following command:

… or a chr$(12);"A"
from SuperBASIC.

In each case, screen memory is filled with spaces, and
the cursor is moved to the top left corner of the screen
where the ‘A’ is printed. And since the PRINT
statement ends without the ‘;’ character, a carriage
return is asserted, moving the logical cursor down one
additional row and to the first column. The resulting
calculation is row (1) * SCREEN_WIDTH (40) +
column (0) + SCREEN_BASE ($0400 on the
Commodore 64 or $C000 on a Foenix F256K). Maths.
Contrary to terminals and some microcomputers,
Commodore computers and Foenix systems do not
display a physical cursor while printing. The visual or
physical cursor ‘character’ on the other hand is
controlled by a series of counters and status bytes to
manage the rate at which the char in the current logical
cursor position will be swapped back and forth from its
reverse field counterpart.
On the Commodore 64, this is accomplished using
several memory locations including:
$C9 and $CA (X and Y position)
$CC blink enable flag
$CD countdown to flash (jiffys starting with 20)
$CE character under the cursor
$CF a flag indicating if the last flash was ‘on’ or ‘off’
With this background behind us, I need to share that
SpeedScript uses none of this!
Instead, it manages its own cursor by watching jiffy
clock timers at locations $A0 - $A2 and changing the
character in memory at the insertion point to its
%10000000 (hex $80) complement using the EOR
opcode and after a time delay, doing it again.
SpeedScript leverages BLINKFLAG and a single byte
memory location which temporarily holds the character
‘under’ the cursor in UNDERCURS.
Managed within the tight MAIN keyboard input loop,
this routine also calls REFRESH to render document
memory on-screen approximately twice a second. And
this dance goes on continuously until you press a key.

* original SpeedScript features09/2023 - F10

If you scan the SpeedScript code, you will notice that
there are numerous CHROUT calls, and even a number
of jsr GETIN calls. But why?
The answer is, SpeedScript uses these routines; not for
displaying document text, but for rendering messages
on the upper status line and also to display disk
directories called for by CTRL-4 or the DOS Wedge.
Interestingly, the act of loading, saving, or verifying a
file produces no program generated output whatsoever;
instead, SpeedScript relies on kernal messages printed
directly after modifying the kernal message control
verbosity setting located at $9d.
Foenix platforms, thanks to the VICKY FPGA, enjoy a
hardware cursor that merely needs to be enabled and
optionally may be modified to flash at a given rate,
alternating an identified glyph or standard character
with whatever character happens to be present in a
given location on the screen. It is all done in hardware
and without the use of reverse field characters.
But this leaves us in a bind. We don't want to rewrite
too much (or any) of the core SpeedScript code, and we
do not have a reverse field character set. Now what?
The answer is, we will make our own and then leave the
SpeedScript code as is. Aside from the 26 bytes of code
below, this approach requires zero additional memory.
Unlike Commodore platforms, the Foenix font (there
are two of them) occupy a read/write bank of memory
which is instantiated at system boot and does not get in
the way of, or take the place of the RAM beneath.
The code below copies exclusive OR’d versions of
standard printable characters to their upper ($80
complement) position within the $C000 font memory
bank. As an example, ASCII 32 (a space) will be
rendered in ASCII 160 as a solid reverse field block.
For completeness, I should mention that VICKY’s
character video engine does allow differently colored
foreground and background characters, so why not just
use that to create reverse field? Because it will cost
more cycles than this approach, and again, we aim to
leave as much of the original code in tact as possible. It
is my hope that an enterprising individual will find
value in our version and back-port it to another system
(perhaps the Commodore 64 :)
Here is the subroutine, executed during initialization
during the first run of the program, only.
 ldx #$00
fontouter inc fontinner+2
 inc fontupper+2
 ldy #$00
fontinner lda $bf00,y
 eor #$ff ; makes 0’s 1 and 1’s 0
fontupper sta $c300,y
 iny
 bne fontinner
 inx
 cpx #$04
 bne fontouter

5

Note that we are stopping short of changing other
glyphs or graphic characters built into the Foenix set.
We are not adopting the PETSCII set entirely. But
there is one exception.
The Commodore version of SpeedScript uses a left
pointing arrow ‘ ’ (PETSCII 95 decimal). Frankly, I
was never crazy about it. I’ve always preferred the
special symbol used in the ATARI 8-bit port of
SpeedScript, so I used the following code to redefine
the character:
 ldx #$08
arrowloop lda returnchar-1,x
 sta $c0f7,x
 dex
 bne arrowloop

The following data was modeled using Ernesto’s
spredit-jr in 8 x 8 mode:
returnchar .byte %00000000
 .byte %00010000
 .byte %00001000
 .byte %00001000
 .byte %01010000
 .byte %01100000
 .byte %01110000
 .byte %00000000

The combination renders newline symbols as follows:

The only other tweak is something that I very much
liked on ATARI platforms; the fact that the cursor does
not normally flash. No added code or data for that one,
I removed a few instructions and saved a few bytes.

Next time: More to talk about
We have two features planned but not yet coded and
between now and the next issue, we will be working on
these. One is trivial, the other will require some design
and experimentation.
a. Status line and enhanced memory-available

tracking; nanoEDIT will use a lower status line to
display telemetry information and we will use a
timer to update this data every 30 seconds or when
text is modified. The other thing the timer routine
will do is count minutes and then issue an autosave
function (if enabled).

b. But the real work will be to implement an undo/redo
journaling feature leveraging an out-of-view 8K
block of RAM. This will not cost us any primary
memory, we’ll slyly bank it in then out as edits are
made. At least that’s the plan.

That’s all for now. Stay tuned for additional
development in this area in the October timeframe and
don’t forget to keep up with development of our kernal
and SuperBASIC series on the 8-Bit Wall of Doom
YouTube channel.

09/2023 - F10

Epilogue - more retro; more SpeedScript
Those that remember the original magazine probably remember what COMPUTE! (then “COMPUTE.”) originally
looked like. It was first published as 1979 turned to 1980 and was primarily focused on the Commodore PET.
Foenix Rising took a look at Issue #2 in July of last year and we’ve attached a reprint of our article at the end of this
article (pg. 8-11). If you are interested in nostalgia, it’s a look at the beginning of a company that became a publishing
powerhouse; starting as a one-person newsletter and acquired for $18 Million dollars by ABC Publishing just 3 1/2 years
later.
And in case you were wondering what became of SpeedScript, you may be interested to learn (as I recently did) that it
still has an active fanbase and ongoing development.
At VCF Midwest 18 (last weekend), I was introduced to a fellow enthusiast that did something comparable to my initial
effort; he typed in the entire source from the archive.org copy, eventually purchasing Brannon’s book, as I did.
His aim is to maintain the source and functionality, to incorporate all of the available add-on patches published by
COMPUTE! in the intervening years, and to do so in a modern Makefile so others can build any of the versions desired
with byte-for-byte accuracy. I’ll publish his github once I get my hands on it.
And finally, I wanted to share the reason why the LOTTASPACES function exists: by Charles Brannon’s own
admittance, working in insert mode can be slow when at the beginning of a large document. SpeedScript has to move all
of memory forward character-by-character and this can get expensive on a 1 MHz. machine. The remedy? Open up a
large space at once (“enough room for a few sentences”).
In our port, we benefit from a 6 MHz. CPU and faster memory, but also have access to VICKY’s DMA engine which we
may or may not use. Stay tuned!

6

Just for fun - a closer look at the way code is represented in the SpeedScript book (2 pages of 30)

09/2023 - F10

Beginner’s Corner: “Up, up, and away”
Pg. 71 of the C64 User’s Guide, revisited

Sprites, then and now

If retro = nostalgia, you’ll be hard pressed to find something as nostalgic as the famous ‘Commodore Balloon Sprite’ demo,
which was (for many) a first taste of the power of Sprite Graphics, and one of many features that put the C64 on the map.

Yes, Atari had Player/Missile graphics and of course, Apple (part of the 77’ Trinity) was first to feature a color [but non-
linear / difficult to manipulate] bit mapped display; but Commodore took a fair amount of heavy lifting off the shoulders of
would-be developers (and the 6510 processor) by creating a custom ASIC to deal with the headaches of managing and
manipulating layers of movable objects, controllable via a relatively easy to understand register scheme.

Page 71 of the C64 User’s Guide included a short BASIC program that out of the box, provided near instant gratification with
just 5 minutes of typing. The curious among us modified the code to change the color, speed, size, direction, and in some
cases, the actual image from the data statement defined hot air balloon you see on this page.

Upon typing RUN and pressing <RETURN>, something wonderful happened, and I’m not referring to the balloon. It was a
wondrous new sensation followed by a realization: “I did that !! I can program a computer !!”.

1	 REM UP, UP, AND AWAY
5	 PRINT “{CLR/HOME}”
10	 V = 53248 : REM START OF DISPLAY CHIP
11	 V + 21,4 : REM ENABLE SPRITE 2
12	 POKE 2042,13 : REM SPRITE 2 DATA FROM BLOCK 13
20	 FOR N = 0 TO 62 : READ Q : POKE 832 + N, Q : NEXT
30	 FOR X = 0 TO 200
40	 POKE V + 4, X : REM UPDATE X COORDINATES
50	 POKE V + 5, X : REM UPDATE Y COORDINATES
60	 NEXT X
70	 GOTO 30
200	 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210	 DATA 7,217,240,7,223,240,7,217,240,3,231,224
220	 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230	 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
240	 DATA 0,62,0,0,62,0,0,62,0,0,28,0

The Commodore 64 example was made possible thanks to the C64’s VIC-II chip which supported 24 by 21 pixel single-color
Sprites. Each Sprite required 63 bytes (or 504 bits) of memory. ‘Multi-color’ Sprites reduced the horizontal resolution to 12
(double-wide) pixels and the same 21 vertical pixel resolution, however only two additional colors could be chosen and were
shared across all 8 Sprites. Things are different now.

* the other thing I ‘love’ about the code above is the line numbering: 1, 5, 10, 11, 12 … COME ON, COMMODORE !!!

Gotta love* the vintage color palette !!

(320 x 200 resolution - for ref/scale, each

character is 8 x 8 pixels)

07/2022

Introduction to this column: In this first issue of Beginner’s Corner, we will be leveraging BASIC816, simply
because it’s accessible to ~70% of the Foenix platforms that are in user’s hands today. Next month, we will
transition briefly to 65816 assembly, in order to tie some of the concepts covered (and a few others) to the
good work that PJW has invested in his 65816 videos.

Longer term, we will land on something platform independent; may be the C Language or possibly a new
multi-platform version of BASIC. With multiple efforts in the works, we expect to know more by the end of
the Northern Hemisphere summer.

Personally, I’m a big believer in high-level (especially interpreted) languages for educational purposes because
they promote experimentation and learning without requiring complicated tool chain knowledge, mastery of
a language, or fear of losing work when things go ‘black’. BASIC was, is, and until further notice, will
continue to be, a reasonable tool for beginners.

Foenix Rising
(reprint)

July, 2022

pg. 7
orig. 8

Back Page - Foenix Rising Issue #2 takes a look at COMPUTE Magazine Issue 2
Compute began as a Newsletter, exclusively for the Commodore PET

In this first of two parts, we’ll take a look at the origins of what would become a flagship computer magazine and touch on a few
products, distractions, and technologies that fostered the growth of an industry

I was at the right place at the right time ‘recently’ when a Minnesota based retro enthusiast offered up “old issues” of his
vintage computer magazine collection for free. He wasn’t keen on cataloging them ahead of shipping, or entertaining
questions about individual issues, but the first to take them all and pay shipping, got them. He was clear, however, that
he was keeping issue #1 of each publication. I may have paid $30 for shipping of a 12” x 12” box, the details are foggy.
This recent event was 15 years ago.
25 years prior to that, I was fortunate to have access to some of these publications when they were new, and like many
across those years, the usefulness of having a monthly journal deliver a continuous supply of articles chock full of
technical detail, tutorials, and type-in programs, could not be matched. Of course, there were ads; tons and tons of ads
which today, provide fodder for articles in their own right (such as last month’s Back Page on “Skyles 1541 Flash!”), or
amazement (“I can’t believe such a product existed, wow!”), and also amusement (“what?! People paid that much for
…”). It was a different time and place then exists today, or has existed since the birth of the modern Internet.
There was a time when two streams of content coexisted peacefully; a healthy print publishing industry, and an emerging
pre-commerce (largely, University and Government funded) Internet, which offered managed Gopher, Archie, [and most
of all] Usenet News services to those of us with access to Unix or VMS based school or work computers.
SGML (structured generalized markup language) hadn’t yet led to a definition of HTML, and NeXT Computer would
not have been invented for another 6-8 years and as such, Sir Berners-Lee was nowhere near prototyping his first HTTP
Web Server.
You see, in the mid-to-late 80’s and early 90s, Internet content was actually ‘free’ and printed material was worth the
cost of subscription. BBS’es weren’t bad either, and other options were emerging as well (such as Compuserve, Fidonet,
Qlink, and moderated forums such as “The Well” aka The Whole Earth ‘Lectronic Link).
It is ironic that just about all of the vintage print based material is catalogued and available for free today, meanwhile,
you cannot even click on a recently published news article (or YouTube vid) of any kind without hitting a paywall or
being force-fed “news” about how a single mother of 3 discovered an indispensable teeth-whitening trick or “32 child
celebs from the 90s - you won't believe what they look like today !!”. Ok, enough of that… I do apologize.
The point of this article is a recollection of better times, and Compute Magazine joined TPUG, Transactor and others to
report and disseminate news and innovation from a burgeoning industry, the first of its kind.

The beginning - not the beginning
In doing research for this article, I came to learn that even issue #1 of Compute, was
not issue #1. Compute was the 2nd iteration of a publication that began through the
efforts of one Len Lindsay, who in April of 1978, decided to put his College
Newsletter Editing skills to work; to aggregate Commodore PET resources and
information into a folded 5.5” x 8.5” monthly titled the “PET GAZETTE”.
Len’s first four issues were indeed published monthly, but success turned to growth
which grew to become a burden, and it forced a seasonal issue frequency and
ultimately, pushed Len to turn the publication over to “Small System Services”, who
had reached out to him with interest right about the time that he was considering
calling it quits. Len went on to contribute to Compute as an author and an editor;
You can read the ‘early’ days of Len’s story here (from Compute Issue #1, pg. 65).

A very quick look at COMPUTE Issue #1
The PET GAZETTE closed with a “Super-issue”, so it was only fitting that Compute
begin with a seasonal (rather than monthly) “Fall of 1979” blockbuster of its own.
Issue #1 of Compute was composed of 108 pages and contained 46 articles, 10 of
which were product reviews plus a group of 4 passages representing Part 1 of Len’s
Word Processor run-down; There was also a hodgepodge of topics including some educationally focused, general 6502
assembly language, a few articles on the BASIC language, one on printing ‘pin-feed’ labels, and an intro to a computer
science level look at sorting algorithms, to name several.

08/2022

Len Lindsay’s publication just prior to
transition to ‘COMPUTE.’

Foenix Rising
(reprint)

Aug., 2022

pg. 8
orig. 29

https://www.commodore.ca/gallery/magazines/compute/Compute-001.pdf

Issue #1 of Compute broke from the Gazette’s Commodore PET only format, but
PET related topics still dominated the issue and it attracted a growing list of
contributors such as Jim Butterfield, and numerous others.
Two of the more interesting articles to me (because of what came prior and what was
to occur in the next 10 years) were Len Lindsay’s “The Evolution of a Magazine”
retrospective, and the very much forward-looking “Publisher’s Remarks” editorial,
which included Editor Robert Lock’s welcome notice, and framed his hopes for the
new publication.
The two-part “Sorting Sorts” is probably my single favorite article because it was
rare in the early days of this publication to see advanced software development or
data structure topics interspersed with consumer and hobbyist content. In these early
years, enthusiasts with SBCs were incorporating circuits that were on-par with
industry quality integration (probably because many worked in electrical
engineering in the first place), but software coming from 8-bit systems was just
getting started.

COMPUTE Issue #2 - size, shape, and distractions
The remainder of this article discusses Issue #2 of “COMPUTE. - The Journal for
Progressive ComputingTM” as published by Small System Services in Greensboro
North Carolina, USA. We will continue on this topic in Part 2 of Foenix Rising #3.
Issue #2 was published as the “January/February 1980” issue; at least, it was an
issue said to represent the first two calendar months of what was to be a monumental
decade for the magazine and the industry.
Robert Lock, editor, quoted the time to publish an issue as a 4-5 month endeavor so
it’s clear to see that with the exception of some last minute product release bulletins,
the publishing workflow of the day didn't square well with the turnaround time
offered by printers of this small but growing quantity.
The newsstand cost of Compute was $2.00 and Issue #2 was 116 pages long
including a 16 page buyers guide coined the “After Christmas Buyers Guide” (not to
be confused with Issue #1’s “Christmas Buyers Guide” which was nearly
identical :)
Loosely, the issue had a preamble containing a table of contents, editor notes, and
miscellany, with the remainder of the magazine split into two parts, bisected by the
aforementioned buyers guide. Said guide looked as if it was printed inexpensive copy
paper, the type you used in your home printer when you’re out of white paper (it was light blue).
The buyers guide was more of a disorganized selection of ads than anything intentionally structured, but looked at
individually, there were some gems within the guide and throughout the magazine; one example was the Eastern House
Software’s “PET Breadboard Kit”.
For $39.95 USD (postage included), the buyer gets a ‘kit’ composed of a breadboard and mounting plate, a 36” ribbon
cable with 24 pin DIP plug, a connector for the PET’s IEEE / User port, and and a clip lead, for power. “Now you can
build those circuits you see in magazines easily and quickly!”, the advert urged.
Later in the same issue, Eastern House Software advertised some actual software: the MAE (PET Macro Assembler, for
$169.95); this was the predecessor to the two-pass Commodore branded “Commodore 64 Macro Assembler”, one that I
relied heavily upon a few years later. It’s fun to connect the dots backwards to see the origins of where some of these
companies originated.
One of the first pieces of reader feedback was from a guy named Dennis C. Hayes (yes, that D. C. Hayes). He was
writing in response to an issue #1 review of one of his products. Really, he was writing to plug his other products but
also to complain (mildly) about the fact that his $395 Apple Micromodemtm product and accessories were reviewed
“without being noted as trademarked products” (tsk tsk), but also that the magazine did not refer to his outfit by its
proper registered name, “D. C. Hayes and Associates, Inc.”.

08/2022

COMPUTE. Issue #2

COMPUTE. Issue #1 - note the
reference to PET Gazette

Foenix Rising
(reprint)

Aug., 2022

pg. 9
orig. 30

A vintage detour - the rise and fall of D.C. Hayes and their Smartmodemtm
Of course, from proprietary beginnings (Apple specific ROM encoded signaling of the
Micromodem), Hayes and his associates would go on and revolutionize the modem industry
with the release of the Smartmodemtm (1981) and its “ATtention” command set method of
controlling it, which obviated the need for complex and proprietary interfacing in favor of
simple text commands that were interpreted by the device over RS-232 serial lines.
The Smartmodem was expensive, but the “AT” protocol made the Hayes usable to
Commodore, Atari, Apple, dumb terminals or Unix hosts without fuss. And this feature-set
was ripped off by every manufacturer including Commodore with their 1200 baud modem.
This facet of the peripheral industry grew massively right through the PC clone revolution,
though Hayes was wiped off the map after a few poorly timed bets on ISDN and a fierce
battle with US Robotics, not to mention a growing field of also-ran, low-cost manufacturers
including one with an ominous name: “Prometheus”. Hayes never saw them coming; had
they been on the lookout for the “Titan who was chained and tortured by Zeus for stealing
fire from heaven and giving it to humankind”, we wouldn’t be having this conversation. :) Again, I apologize.
Hayes also botched licensing opportunities and mismanaged the handling of patents and lawsuits, which makes Dennis
Hayes letter to Compute even more ironic.
I still have my Smartmodem 1200 and it still works to this day. It proudly powered my Commodore 64 based BBS for a
few years when I was in Berkeley; I still have not located the sister product, the Hayes Stack Chronograph (see figure
30a). It could be that Hayes did not sell many; the Chronograph was an expensive solution looking for a problem.
As Foenix owners are likely aware, all Foenix computers ship with an RTC (real time clock) circuit; feed your Foenix a
CR2032 battery and you’ve essentially reproduced what Hayes once sold for $249 USD (about $800 in 2022 dollars),
but directly memory mapped as binary coded decimal.
The Hayes Chronograph on the other hand, would communicate over 300 and 1200 baud serial lines with a host
computer to exchange ‘real time’ chrono data from this single purpose product. Once configured, you could ask it
“ATRT” and retrieve “123015P” (12:30pm and 15 seconds) over the serial port. You could also set an alarm and have
the chrono raise the ring-indicator (pin 22) high when the set time had been triggered.
I suppose there were practical uses for it, but there were better things to spend money on in the 80s. Such as a computer.
You might create a ‘time card’ application for a small business, coordinate transmission of file transfers for off-peak
hours to save toll charges, or guarantee that logged events (such as user logons) were recorded according to an out-of-
band, but accurate and controlled time source. The industry and the pages of Compute, BYTE, and other magazines
were full of products like the Chronograph.

COMPUTE had articles too
The first half of Issue #2 contained just three or four general (multi-platform applicable) articles, and many that were
PET specific. More than likely, the editors had to push content around in an attempt to have the Buyers Guide act as a
separator between the general magazine and the Gazette portion, the latter of which was indeed platform focused.
Compute did something similar in Issue #1 as well, but quickly gave up on the idea eventually.
In the early months of the publication, they struggled to get their hands on Apple and Atari content, logging 2.5 pages for
the Apple and 7.5 pages for Atari in this issue (though the first 4.5 pgs was a comparison of Atari and PET BASICs).
Compute would not have this problem for long; by mid way through their first year, the quality and quantity of articles
improved dramatically and they likely had a backlog of cutting room floor content to choose from. They eventually
started paying authors by the page ($50), and by January of 1981, had moved to a monthly format.

Here is a list of of articles from the first ‘half’ of Issue #2, a few of which are tagged (x) for discussion below.
 Sorting Sorts, Part 2 by Rick and Belinda Hulon PET* 3.5 pgs
 Memory Partition of Basic Workspace by Harvey B. Herman PET 2 pgs
 Home Accounting, Plus An Easier Method of Saving Data by Robert W. Baker PET 4 pgs
 Word Processing. A User Manual of Reviews - Part 2 by Len Lindsay PET 5 pgs
 Book Review: 6502 Assembly Language Programming by Jim Butterfield general 6502 1 pg
(x) Machine Language Versus BASIC: Prime Number Generation / AIM 65 by Marvin L De Jong AIM 65* 2 pgs
 BASIC Memory Map (Page 0): Aim, Kim, Sym, PET, Apple compiled by Jim Butterfield Multiple 1 pg
(x) Ramblin’ by Roy O’Brien PET 1 pg
 The Learning Lab by Marlene Pratto PET* 1 pg
 Micros and the Handicapped by The Delmarva Computer Club general 1 pg

fig. 30a

08/2022 * one or more of the examples referenced are applicable or convertible to other platforms

Foenix Rising
(reprint)

Aug., 2022

pg. 10
orig. 31

A closer look at Marvin L De Jong’s Prime Number Generation article
Dr. Marvin De Jong was a Physics professor at The School of the Ozarks in Pt. Lookout, Missouri and authored a series
of books on Computer Science, Physics, and Mathematics in addition to a handful of articles for various publications.
In this article, Dr. Marvin provides commented 6502 source code and an explanation supporting an algorithm to
calculate prime numbers of the form 2N-1.
The code provided was designed for an AIM 65, but the platform specific portion is limited to a single JSR to print the
ASCII character (number) from the accumulator to the screen; this code should easily port to a Commodore 64, 1 MHz.
reference system using CHROUT $FFD2 and to a C256U Foenix system using PUTC $00:1018.
The author introduces the subject recalling that one of his students was searching for ‘perfect numbers’ and wrote a
BASIC program for an Apple that took 11 hrs to produce a desired result. In response, Dr. De Jong rewrote the program
in assembly language and executed it on the AIM 65, requiring only 11 minutes of run time.
Commented source is provided for the 86 instruction program; based on the text, the program requires an additional 3K
of working space in order to store the resulting number in BCD. I won’t pretend to be able to understand how he goes
about generating said large prime numbers, but you can :). What I will do is assemble it and post it on the Foenix
Marketplace as part of the September update. I’ll include relative timing in the notes on the Marketplace as well.
Following this (his first article published in Compute), Dr. De Jong went on to write others including:

• Experimenting With The 6551 ACIA - March, 1981
• Computer Communications Experiments - March, 1981
• A Floating-Point Binary To BCD Routine - April, 1981
• A General Purpose BCD-To-Binary Routine - October, 1981
• Plotting Polar Graphs With The Apple II - February 1982

“RAMBLIN’” by Roy O’Brien - what is this all about?!
Roy O’Brien’s article stands out, not only because is one of the few music
related articles in this early day of Compute, but because his article is
entirely hand penned, including a table detailing musical notes, frequency
in Hz., and shift rates for addresses that map to the PETs 6522 versatile
interface adapter (VIA) to yield magic.
This is interesting to me for three reasons. First off, the CB2 line of the
user port of the PET computer was a commonly identified source for
generating audio from the early Commodore machine but I hadn’t seen
details published in a music context. You see, only newer PETs came
equipped with a piezo buzzer. Early games such as Weather and Space
Invaders were limited until an enterprising engineer/hacker figured out and
socialized a standard way of producing audible atonal buzzing. I do not
believe that Roy invented the method, but he clearly had an understanding
of the workings, and explained it on one page, expertly.
The 2nd reason this articles appeals to me is that the VIC20 (which would
have basic tone generation capabilities), was not even announced at the
time of this writing and while other platforms from competing
manufacturers did offer audio capabilities, this method generated a fair
amount of excitement for PET owners.

Finally, this article appeals to me because it is hand drawn; the
publisher probably had no other means of easily producing the
table and diagrams.
Mr. O’Brien would go on and publish more in subsequent
issues; to the left is a sample of two others, published during
Compute’s first year. The camera idea is particularly
entertaining; look for these on archive.org.
Next issue, we will pick up where we left off, examining a few
more vintage ads and looking more closely at the ‘Gazette’
section of Compute, issue #2. Until then …

pg. 11
orig. 3208/2022

Foenix Rising
(reprint)

Aug., 2022

https://archive.org/details/compute-magazine?and%5B%5D=year:%221980%22&and%5B%5D=year:%221979%22

	Sept. 2023 / F10
	(FLASH!)

