
th
is

iss
ue

la
te

r
ne

xt
 is

su
e

This article begins with a story of how the need for a simple utility turned into a quest
to deliver new operating environment for a computer that already had one. Along the
way, we acknowledges ‘giants’, as in “standing on the shoulders of …”.
While plenty existed (magnetic core memory, logic gate modules, electricity) before
CPUs were affordable, the advent of just about everything else that mattered became
available during the golden-age of microcomputers (1975-1990). Our shared history is
as storied as it is important, so we will point out a few signposts en route. Enjoy!

(FLASH!)

Making your own tools / a convergence of needs

hosted on another platform to manipulate and visualize
8-bit fonts and 24-bit color. It’s all about taking what you
do have to create something that you don't have.
In this article, we will begin a build of the ultimate
microcomputer accompaniment, a 6502 machine language
(ML) monitor for the Foenix F256 platform. The plan:

✓ Write a memory examination utility from scratch, but
tailored for the F256 platform. We will do so in support
of a fork of a kernel environment that is also being
developed; stay up to date on my YouTube channel:
8-Bit Wall of Doom) for more insight.

✓ Take Steve Wozniak’s original Apple I disassembler as
published in Dr. Dobb’s journal, and port it to the F256.

• Modernize the disassembler to recognize the full WDC
65C02 instruction set (8 new instructions plus added
addressing modes for the original MOS6502 opcodes).

• Consider if a simple version can run under TinyCore/
MicroKernel and discuss what a minimum viable kernel
ought to include from a services perspective.

• Port and integrate Charles Brannon’s SpeedScript editor
(because it is tiny, refined, and well documented).

• Port and integrate a File Manager with ‘launch’
capabilities from my own 6502 Source code (1986)

• with more to come…
… but first, some history:

In the beginning: The MOS Technology KIM-1
By the middle of 1975, MOS was distributing samples of
their first soon-to-be blockbuster product: the 6502 CPU.
They were also readying the KIM-1 for release.
The KIM-1 was a single board development system for
would-be 6502 hobbyists and integrators, and it was
literally named after its key feature; it had a keypad for
hexadecimal input and a 6 digit hexadecimal LED
display, plus a monitor program masked into the MOS
6530 RRIOT IC. (The 6530 preceded the famous MOS
6522 and shared some of its features; some say these ICs
are as important as the CPU; more on them another time.)

The machine shop
As a youngster, I was fortunate to have been exposed to
influences that would end up invaluable to my future, and
in ways I never imagined. Rarely, do we see it coming.
For me, #1 was my step-father, Bert. When he wasn't
yelling at me to get my broken-down ‘parts-car’ out of the
yard, he was clocking overtime as a laborer working for
U.S. Navy contractor Grumman Aerospace.
I never understood what Bert did for Grumman precisely,
(he was 20 years older than my mom and didn't talk
much) but his toolbox and bench were full of machined
aluminum parts, fasteners, and industrial tools. He was
less than thrilled that I poked around in his stash because
I misused his tools1 and rarely put anything back in place.
Born in 1926, Bert was a high-school dropout and he
reportedly lied about his age to enlist in the Navy during
WWII. All I knew was, the guy was a legend. Each
summer, he would drag our family to the “Grumman
Family Picnic & Air Show” where several thousand Long
Islanders witnessed might & machinery in the form of the
F14 Tomcat and a dozen other aircraft flying for the
entertainment of a massive and proud community.
Grumman also powered a bustling local electronics
industry; talk about being born in the right place and time.
An obvious influence was education, but not in the way
you might expect. As a middle school student in the 70s,
girls and boys in the Northeast U.S. were led through
Industrial Arts training, which included metal shop, wood
shop, and in high school, drafting and machine drawing.
These were the skills that educators felt were important
for our generation.
What does any of this have to do with Foenix computers?
Loosely, everything. Sometimes the universe grants you
gifts and sometimes, it gives you something better; pieces
of a puzzle, leaving the rest up to you.
In the first few issues of this Newsletter, we used
BASIC816 to build a few lightweight utilities; one to
display sprite data as text and one to manipulate color
palette encoding; we also leveraged Unix shell commands

Aug. 2023 / F9

11 For a great ‘Bert’ story, see the bottom of pg. 6

https://tbrnewsmedia.com/grumman-on-long-island-a-photographic-tribute-showcased-at-the-port-jefferson-village-center/
https://github.com/pweingar/BASIC816
https://www.youtube.com/@8-bitwallofdoom
http://www.woz.org/about/

2

In 1975, machine language monitors for microcomputers
were a *new* idea. The IMSAI 8080 and Altair 8800
(two other hobbyist microcomputer offerings) were
based on the Intel 8080 CPU and only offered toggle
switch input and a set of single element LEDs for status.
If it mattered (it didn’t), Digital Equipment Corp (DEC)
might have suggested that the IMSAI interface was a
rip-off of the PDP-8 mini released a decade earlier.
The KIM-1 seemed primitive but delivered a level of
satisfaction and
immediacy akin to the
much sought after x-ray
vision superpower
(sensationalized in
super-hero comic book
ads), otherwise known
as the ability to slide a
virtual window over
something (memory) to
see its contents,
otherwise obscured; to
set or advance a
program counter; or to
modify memory by
keying in code and data
to ultimately execute.
Ladies and Gentleman, the monitor had arrived.
A recommended read, aptly named the First Book of
KIM, was published by Hayden and edited and compiled
by Jim Butterfield and others; it brought the KIM-1 from
science project to a near-friendly consumer product. The
ambitious preface said it all:

The book included technical detail written in Jim
Butterfield’s approachable style followed by dozens of
ready-to-run amusements, data acquisition and
computational programs and tools, plus encouraging
commentary. Here’s an excerpt from “LOOKING AT
MEMORY” on the first page:

As the world learned more about the 6502 and the
KIM-1, Steve Wozniak and others began publishing
fully commented assembly code in educationally
focused articles which were generally applicable to kit
systems (recall, there was no Atari or Apple just yet).
Much of what was published was distributed through
grass-roots newsletters and one such publication, Dr.
Dobb’s Journal, became an aggregation point for these
efforts, including the disassembler that we cover below.
In Volume 1 of Hayden’s article reprint of Dr. Dobb’s,
there are 1/2 a dozen 6502 related pieces, the first of
which concerned capturing of breakpoint (BRK) data by
John Zeigler, originally published in March of 1976 at
the Homebrew Computer Club. The last 6502 article of
the first year of Dr. Dobb’s was entitled “A 6502
Disassembler from Apple” and it was published in
September of 1976 by Steve Wozniak and Allen Baum.
In the 12 months following the release of the KIM-1, the
Apple 1, Commodore PET; and ultimately, the Apple II
were released (~6 mos. apart). Each system included a
monitor in ROM, but that changed in 1980 when the
VIC-20 was released (thanks Jack!).
Meanwhile, Apple II’s CALL -151 implementation
stood out. The monitor itself was nothing special, but
Woz’s ingenuity led to a method to redirect I/O from
analog tape and then to support the yet to be invented
SuperSerial card that hobbyists across the next decade
would depend upon for off-host backup & restore and
eventually, boot disk creation for a systems otherwise
left for dead. This bare metal foundational capability
existed across the Apple II+, IIe, IIc, and even the 65816
based IIGS.

Steve Wozniak and his monitor related efforts
Volumes have been written about Wozniak’s embedded
Apple 1 monitor. Built from 124 lines of assembly
language source (248 bytes of object/machine code), the
very first Apple computer came with the monitor stored
in upper ROM occupying the last page of memory from
$FF00 to $FFF7 (Woz used all but 2 bytes of space, not
including the 6 bytes worth of 6502 vectors).
With only one page of memory ‘used’, and no graphics
or kernel to speak of, the Apple 1 must have felt
spacious. How on earth would a user ever use up to
64K of RAM? Not only were programs scarce, but
digital content did not yet exist, except within research
and government agencies. Of course RAM was
prohibitively expensive in those days and the most
dense RAM footprint that was feasible provided 4K or
8K (multiples more than the KIM-1, but otherwise tiny).
Tailored for terminal input/output, the new monitor was
a fond departure from ‘toggle-in’ and keypad interfaces.
For our project, we developed our own monitor (you’ll
see why); but the following two recently published Ben
Eater videos provide a full retrospective of this first
noteworthy terminal based effort. Ben examines Woz’s
early work by way of the Apple 1 and specifically, the
famous first monitor affectionally known as ‘WozMon’.

08/2023 - F9

http://archive.6502.org/books/first_book_of_kim.pdf
http://archive.6502.org/books/first_book_of_kim.pdf
https://www.commodore.ca/commodore-history/jim-butterfield-meet-jim-butterfield/
http://archive.6502.org/publications/dr_dobbs_journal/dr_dobbs_journal_vol_01.pdf
https://www.computerhistory.org/revolution/personal-computers/17/312
https://www.youtube.com/watch?v=A1PYNr3N_-g
https://www.youtube.com/@BenEater
https://www.youtube.com/@BenEater

In the following video which I consider Part 2, Ben
navigates a deep dive into the WozMon code; this is the
part that most impresses me, and it's not just Woz. It's
also Ben. He breaks down complex subject matter
expertly. If at some point in watching this, you feel lost,
hop back to Ben's channel and check out his 6502 series
(playlist). It will take some discipline to power through
it, but it's well worth the time investment and you need
not purchase the kit. You can (I did), but even if you just
follow along at home, you’ll feel like you own one.
That is the magic of Ben’s immersive presentation style:

What about the rest of the world?
As a teenager learning assembly language in the early
‘80s, monitors were mysterious to me. Since they were
distributed as machine code, they gave zero insight into
how they worked. From a terse list of commands they
provided the power to produce programs from a small
footprint without the fanfare of full assemblers and the
cost of ‘development environments’ that tended be as
expensive as the computers they ran on.
But monitors were (since day one) free; and while there
were commercial products such as HesMon by Human
Engineered Software (developer of GridRunner) or as a
utility within another cartridge such as Epyx Fastload,
scant documentation meant the learning curve was steep.
Oh, another thing… YouTube did not yet exist and Al
Gore was flunking College Science during the formative
ARPAnet years. He did not invent the internet :)

But Woz and a colleague named Allen Baum, on the
other hand, wrote (and shared with the world) an early
6502 disassembler toolkit, free to anybody that wanted
to type in the hex digits and save it off to tape.
Published in the September 1976 issue of Dr. Dobb’s
Journal (printed on page 22-25) “A 6502 Disassembler
from Apple” squeezed a surprising amount of utility into
a single page of code but then used an additional page
for tables of data including packed mnemonics, encoded
addressing modes, and some wizardry.
Fast forward to today, and assemblers are at last, free!
Merlin32, descendant of the original Apple II assembler
by Glen Bredon is a full-featured cross-assembler
available for Linux, MacOS, and Windows. 64tass,
cc65, and others are also free and are well supported.
But a noteworthy platform example for the Commodore
64, still relevant today, is Turbo Macro Pro, originally
written by Wolfram Roemhild. Robin from the
YouTube channel “8-bit Show and Tell” is an avid
user and features TMP across many of his videos; this
one in particular provides a good beginners introduction.
Bookmark this moment, it will be relevant later!

Basic monitor operation and differentiating features
In primitive form, a monitor allows examination of
memory contents and may also include functions to
display registers including the program counter, status
byte, and stack pointer. Monitors historically operated
with hexadecimal values exclusively, accepting
whitespace delimited two-digit numbers strung together
as input. Ultimately, there is the ‘go’ command (‘G’)
which executes code from a given address.
Fancier efforts tack on interpreted ASCII display views
that even allowed search and edit of text; and as
mentioned, some include disassemblers and even simple
assemble utilities with relative branch offset resolution.
An important aspect of any development or debugging
environment is how recovery and workflow is dealt
with. Assembled machine code is unforgiving and it's
easy to experience a crash or lock-up. Restoring (via
NMI vector) to a stable operating base, or via
documented recovery address is an important ‘tool’ to
have in your arsenal, especially while debugging. More
on this subject to be discussed in future.
Across the next pages, we will discuss the development
of a purpose built F256 monitor and a port of the
Wozniak disassembler toolkit from Dobb’s.

Part 1 - Ben Eater’s Intro; Apple 1 history included (~15 mins.)

Part 2 - Ben’s ‘Inside’, deep dive (~37 mins.)

3

Eastern House
Software was early
and sold a MACRO

Asm/Editor for
$169 “back in” ‘81

Retro distraction

 a vintage ad from 1981

Inflation adjusted, this is ~$580 in 2023
dollars! But think about how much

software was yet to be written and how
much opportunity existed in a brand new

industry that was just getting started

08/2023 - F9

https://www.youtube.com/watch?v=HlLCtjJzHVI
https://downloads.reactivemicro.com/Documentation/Books/6502%20Disassembler%20-%201976.pdf
https://downloads.reactivemicro.com/Documentation/Books/6502%20Disassembler%20-%201976.pdf
https://en.wikipedia.org/wiki/Glen_Bredon
https://tass64.sourceforge.net/
https://cc65.github.io/
http://turbo.style64.org/about-the-turbo-assembler-homepage
https://www.youtube.com/watch?v=EUCSZw7piKE
https://www.youtube.com/watch?v=EUCSZw7piKE
https://www.youtube.com/watch?v=SpG8rgI7Hec

Introducing nanoMon
nanoMon is being designed to function as an embedded
monitor providing data interrogation, manipulation, and
load and save for the F256 platform. Longer term, the
project might consider on-platform assembly and
debugging but at the moment, sample prototype code is
being developed to measure what fits into an 8K
envelope and what can be delivered by end-of -year.
It is anticipated that at first release, nanoMon will be a
CLI (versus an open screen editor) based monitor,
coded to work within the native TinyCore MicroKernel
present in every F256 (K and Jr.) platform out there
today. As such, it will include a simple line editor and
up/down command execution similar to Foenix MCP or
a Unix shell.

Longer term, it is envisioned that nanoMon's true
strength lay in its integration in an operating
environment geared towards developers which will
leverage a Commodore clean-room kernel written to run
natively on the F256. The screen shots on pg. 5 below
are from a prototype of this platform.

What’s in a name; ‘nano’?
Contrary to the size-obsessed ‘80s where something
deemed full-featured became “Super” and something
crowned super became “Super+”, we decided to go in
the other direction. MicroKernel is the default kernel
on the F256 platform, and since micromon is already
taken, nanoMon is our choice.

The general philosophy is as follows: If Commodore
and others were able to more-or-less fit within the
confines of an ~8K kernal ROM and an ~8K application
ROM (BASIC 2.0 in their case), nanoMon should as
well, thus leaving more resources and less complexity
for the developer. Code requiring access to a simple
kernel would therefore have all except 8K plus two 256
byte pages of high memory and two, 256 byte pages of
non-zero page low memory. Ideally, part of this code
will be relocatable as Jim Butterfield’s Supermon+ was.

nanoMon features
For the monitor aware, some of these commands will be
familiar to you; but there are new commands as well
which support F256 specific features such as display
stride, I/O bank selection, and VICKY registers
interpretation.
Here is a short list of implemented and planned
commands, followed by screen shots of a work in
progress:

[l] oad - .PGX file load with optional addr override
[bl] oad - address agnostic data into a given address
[cl] oad - Commodore format load (headed by low-
byte/high-byte pair)
[hl] oad - .HEX encoded file load

408/2023 - F9

[s] ave - address agnostic data save to default device
[g] o - execute code at given address (also [e] xec).
Entering 'g' with no arguments will use the program
counter address.
[m] em - display and interrogate memory according to a
given stride mode at ‘next’ address if not specified
[d] is - disassemble from a given address, or from
‘next’ (program counter); currently using the Wozniak/
Baum code referenced in the article above
str - advance display stride mode (command will
return the 3 char identifier of the new mode) which will
include any of the following 8 options (see pg. 5):

i/o - advance I/O bank mode (determines which page
will be visible to mem functions aka: reg ister memory,
fon t memory, txt memory, or col or memory
[h] unt - hunt for data (enables, or if blank, disables,
context highlighting)
[f] ill - fill memory with a value
[r] eg - enhanced register display
[b] reak - set breakpoint address
a - print or set accumulator value (instantiated at 'g')
x - print or set x register value (instantiated at 'g')
y - print or set y register value (instantiated at 'g')
sec, clc, sed, cld - set or clear select status flags
(instantiated at 'g').
e [x] it - return to calling program

'16B' (default) - displays a conventional hybrid
mode of hex bytes plus interrogated ASCII, 16
bytes across
'08B' - same as above but 8 bytes across
'g4B' - graphical 4 byte mode (displays binary
byte data as tied to a gradient palette color to false
greyscale (4 shades plus transparent) based on a
simple algorithm. Ideal for 32 x 32 sprites
'g3B' - same as above but suitable for 24 x 24
sprites
'g2B' - same as above but suitable for 16 x 16
sprites or a subset of tile data
'g1B' - same as above but for 8 x 8
'bit' - binary mode; similar to above but data is
depicted with a single byte per line with open or
filled graphic o characters. Suitable for general
binary data manipulation or live font editing
'24B' - wide format (no ASCII displayed) - a
good mode for viewing a full 256 byte page of
data on just two screens and useful in the case of
context sensitive highlighting (from hunt/search)

This mode portrays 8-bit, 16-bit, 24-bit, and 32-bit
square graphic assets (sprites and tiles) using a simple
false-color mapping. The 4 variations are named based
on the # of bytes as gxB (where x = ‘1’ .. ‘4’).
This mode, while complete as a proof of concept, is a
work in progress and will depend on memory available,
reduce/expand and shift functions are being considered
to allow this feature to apply to bitmapped assets and to
provide true-palette mapping. This will be discussed in
an upcoming video on my 8-Bit Wall of Doom channel.
#5: bit mode - useful for toggling bits in data or
visualizing and editing fonts (monochrome assets); this
mode is similar to #4 above, however has a fixed stride
of a single byte and is most applicable to bank 1 font
memory located at $c000 as shown in the screen
capture below.

Feel like living dangerously and
editing fonts ‘live’? Have at it!
Since the F256 has two font sets to
choose from (and since the yet to be
released nanoKernal CLI
environment provides char set
swapping with a single function key
keystroke), you can leverage the
this feature to edit using one font,
and quickly toggle to view the
results without the dilemma of
transforming ‘the’ character set into
symbols from the Mamluk dynasty
(said another way, no Rosetta Stone
is required). Since you are editing

data in native form, you may use other monitor features
to edit, relocate (copy), and save to disk for later
loading into your own program; all without the aid of a
purpose built font editor. Native tools rule!

The disassembler that led a legendary disassembler
History tells the story of how a principal of the Toronto
Pet User’s Group (TPUG), leveraged Woz and Baum’s
disassembler to form the basis of ‘SuperMon’.
Of course, I’m talking about Jim Butterfield. SuperMon
has been thoroughly written about and enhanced up to
its final ‘+’ form which was revamped to look and feel
like the monitor built in the Commodore 128.
SuperMon+ has also been torn down, analyzed, and
documented by developers, and in fact, is available in
heavily commented source thanks to J.B. Langston’s
GitHub here. While it no longer resembles the simple
monitor that Wozniak and Baum created, the core use
of tables to pack opcode data remains in tact.
nanoMon, on the other hand, contains a direct port of
the original Woz & Baum disassembler. The screen
capture below (pg. 6) is rendered in F256 ‘double-y’
character mode (80 x 30). Rather than dive into the
original code in this article, we’ll simply table the topic
until next issue where we extend the disassemble
routine to capably interpret the set of ‘new’ opcodes

5

Example mem screen shots in various stride modes
#1: 24B mode - packs 1,560 bytes worth of data on a
single 80 x 60 screen. Most useful when looking for
search terms (which would be highlighted in reverse
field); much ground can be covered quickly with
forward and backward scrolling in this mode.

#2: 16B mode - the default, contains 16 bytes left to
right with ASCII characters represented. Allows full
editing with hunt (search) highlighting supported.

#3: 08B mode - more targeted and closer to the famous
40-column displays of the early ‘80s. This is an ideal
mode for double-wide/double-high text for those of us
(me) that are eyesight challenged from looking at tiny
text for too many years.

#4: g4B mode - graphics interpolation at 32-bits (4
Bytes). Assuming a gradian palette, one of 5 symbols

will be rendered; a zero
(transparent in the palette), 3
shades of grey, and white
represent the equivalent of 2
bit+ greyscale shading.
As opposed to ‘bit’ mode
(#5), color data on the
Foenix platform is described
by 1 byte per pixel where
each byte value indexes into
a 24-bit color LUT.

Visually, this would otherwise appear as random data.

The “READY” prompt is ceremonial.
nanoMon is written in assembly language :)

In the Apple 1
ad on the last

page of this issue,
you’ll see

marketing touting
“192 memory

locations
displayed at

once”.

It took almost 50
years, but we

finally beat it :)

08/2023 - F9

https://github.com/jblang/supermon64

Which ‘Bert’ story is best?
In 1979, a kid with no quarters (me) stumbled upon a
‘golden-ticket’ idea. Pry as many of the coin-sized
circular knockouts from all of Bert’s electrical boxes, file
off the rough edge, and head out to play Space Invaders
and Atari Sprint 2 at Modell’s Department Store.
It took a year for him to realize what I had done; I was
helping him mix concrete in the basement when he
discovered the large box full of Swiss cheese remnants. I
think his words were something to the effect of “Son of a
bitch”! (Bert was never short of one-liners).
Of course the scheme only worked because the coin
mechs of the day did not feature magnetic or weight/
inertia reject. My next scheme involved a metal washer
and a piece of fishing line. I never got that one to work.

brought forth with WDC’s 65C02 in addition to
providing support for added addressing modes of the
original MOS 6502 opcodes.

MOS 6502 vs. WDC 65C02
The graphic to the right depicts an overlay of a modified
pagetable.com image which is a color-coded MOS 6502
opcode chart placed on top of an opcode chart from the
‘modern’ WDC 65C02 documentation. The result is a
clear picture of the new instructions.
Boxes with non-colored opcodes are ‘new’ instructions
and will be added in the next phase of this project.
An obvious example of this is the oft used BRA opcode
($80) bordered in red, which is “branch unconditional”
relative and takes a space in the table that was
previously unpopulated.
Time and space permitting, we may visit the madness
behind control-word formulation with another look at
Stephen Edwards Advanced 6502 Assembly Language
video. In it, he talks about patterns of instruction
groups and bitwise isolation of modes and ultimately a
few anomalies (made worse with the 65C02 additions!)

Disassembler porting, briefly discussed
To the right is a capture of the Woz & Baum
disassembler ported to the F256 running inside of the
nanoKernal CLI environment (loaded with sample code
at $1000).
As we will discuss in updates to this project, one of the
delivery objectives is to be able to run a subset of
Commodore 64 character mode applications
unmodified. There will be a long list of exceptions, but
the sample code loaded is a ‘first’ try of sorts. (more on
this endeavor and the work required next time)
Aside from a few simple formatting changes, the only
significant change required to port this code to the F256
platform was to resolve the character output routine (the
Apple 1 did not use standard ASCII, but it was close).
One matter that puzzled me initially was a missing
subroutine in the Dobb’s listing. Then it struck me, the
code assumed that it was running on an actual Apple 1,
hence, Wozmon was expected to be resident in ROM
and the disassembler, a user-mode application.
(Wozmon was not a kernel per se but contained the
system output function similar to $F000 (PRINT) on
the Rockwell AIM-65 (written about previously):
CHAROUT - existed in WozMon, however, needed SEC
and SBC #$80, then a call our own CHROUT which
manages our screen handler and character text modes.
PRBYTE - (16 lines) existed in WozMon and contains
an efficient algorithm to to print the accumulator value
as two printable hexadecimal nibbles.

6

pagetable.com - Ultimate opcode reference, superimposed with
the WDC 65C02 documentation opcode table

08/2023 - F9

Sweet arcade cash: 14 x .25 = $3.50
Cost (me) = nothing

Apple 1 ‘disassembly
toolkit’ ported to F256

https://www.pagetable.com/c64ref/6502/

Vintage advert time machine - despite producing only about 200 units, this very first Apple Computer ad provided the
look and professionalism akin to anything Apple would create in their first 5 years of Apple II product production and
beyond. The combination of Wozniak’s knowhow and Jobs’s vision was unstoppable; and they were just getting started!

08/2023 - F9 7

Key points…
‘no more lights’

‘192 locations displayed’
‘firmware in ROM’

‘enter in hex’ and …
“You’ll be looking at letters

and numbers instead of
just LEDs”

	Aug. 2023 / F9
	(FLASH!)

