
Picking up from January, we will examine aspects of development & design 
and then dip into the code used to accumulate and convert BCD values to 
address pointers for sprite numerals.  (who doesn’t love sprite numerals?)

( FLASH!)

Joining BCD encoding and 19-bit (?!) graphics addressing 
A quick look at a few blocks of code from last month’s “balls” demo and then… RTC and Interrupts use

Once data is where we need it, all that is required to 
instantiate is to set x and y locations, set the address 
($8000 in last months code) and set the sprite enable bit.  
(size, priority, and LUT defaults of 0 bring us across the 
finish line) 
As luck has it, 32 pixels x 32 pixels is exactly 1,024 
bytes, a size that we are pleased to work with since the 
offset between $8000, $8400, $8800, etc. lends favorably 
to the simple shift & add algorithm covered on page 2. 
All in all, the approach below is a “good enough is good 
enough” version and is the actual code present in the 
telemetry version of the balls demo published last month. 

It performed well, 
but we had to limit 
the qty. of NBALLS 
rendered to 32. 
Our next release will 
improve the design, 
cutting telemetry 
CPU use to a fraction 
(1/16th estimated). 
In March, we will be 
publishing a “how-
to” guide (an easy to 
follow workflow) for 
adding your own 
bitmap data (or assets 
from elsewhere) into 
your programs using 
a low-cost option: 
ASEPRITE and a 
no-cost classic: 
GIMP (the Gnu 
Image Manipulation 
Program).

Binary Coded Decimal (again) 
Discussed prior, the BCD mode of the 6502 CPU gives 
the programmer an efficient and low-touch method to 
perform arithmetic on base-10 numbers and does so in a 
form that is readable to humans and easily convertible for 
output (or to map into memory). 
In issue #4, we dove into BCD, working with massive 
numbers in the process.  Last month (issue #5), we used 
BCD to accumulate memory banking stats for the F256 
Jr. platform in a bitmapped graphics memory banking use 
case (counting up to 100,000,000 per mem bank metric). 
As simple as BCD is to use, connecting it to graphic data 
might appear unnatural, or at a minimum, non-trivial; but 
in fact, the opposite is true.  Powers-of-two bit-shift 
operations and friendly memory alignment help make our 
job easier. 
In this FLASH! feature, we discuss the code used in the 
telemetry subroutine of the ‘balls’ demo starting with the 
no-frills version.  The assembly code on page 2 and 3 gets 
the job done, but there is always room for improvement. 

Creating and locating graphic source data 
The set of purple on green sprites used in our demo was 
created using ASEPRITE in the form of a 32 x 352 pixel 
graphic image; in figure 1a, the ‘0..4’, ‘5..9’, and the 
comma are stacked end-to-end in memory, creating a tall 
column with a stride of 32 pixels (the blue ASEPRITE 
gridlines are for reference and do not exist in the data). 
The workflow of: ‘design’ -> ‘save’ -> ‘load’ -> ‘export’ 
create Foenix load-ready sprite and color palette files, 
easily wrangled using 64TASS.  As written, the compiler 
directives below pull data into our project starting at 
address $8000.  Omitting the ‘* =’ address will encode 
data inline, and we can move it later (we have a choice). 
In our code, we will point to it using the following low-
byte/high-byte notation: ‘#<sprbmp’ and ’#>sprbmp’ 

* = $8000  

sprbmp  .binary "Sprite-10nums.data",0,11264 
sprpal  .binary "Sprite-10nums.data.pal",0,1024 
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figure 1a

Sprite set 
"Sprite-10numsv2" 

contains a few 
additional symbols

https://www.aseprite.org/
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The code below represents the full end-to-end bank 
‘adder’ subroutine which is used to accumulate 4 BCD 
digit pairs for a given (passed in via accumulator) bank 
number.  We start by saving a (the accumulator) and in 
addition, push the x and y registers onto the stack 
because the calling code needs them back in the shape 
they sent them.   
Unlike other CPUs, the 6502 is limited to only 3 
‘working’ registers, necessitating store and load from 
memory.  The trick is to orchestrate transfers between 
registers, the stack, and memory in a way that supports 
‘clean’ code; otherwise known as reliable, easy to 
follow, and adequately performant. 
Some of the VICKY I/O registers are write-only, but 
those that are read/write let us check state without using 
memory to manage (store and read); in other words, you 
can query and act on a value easily, and need not worry 
about drift. 
But nothing is free; on the F256 platform, you are going 
to have to get used to managing I/O banks.  This means 
establishing a policy to either keep the most oft accessed 
bank ‘in’ or alternatively, always set it based on ‘need’.  
As an example, a text editor might opt to keep the text 
page banked in while a graphics or device-heavy use 
case might choose to keep the I/O bank resident. 
If you read issue #4, you might recognize that the add 
#$00 with carry methodology used below is similar to 
the De Jong code discussed in the Mersenne Prime 
example.  This is a common way to conduct multi-byte 
addition (whether in BCD mode or standard, non-
decimal base 2).  The adc #$00 seems peculiar, but is 
the 6502 ‘way’ to add a carry bit forward. 
Word of caution: the code below will not work on an old 
school 6502, since it uses the phx and phy opcodes 
which are ‘new’ to the WDC 65C02 (also available on 

telem01  pha         ; preserve a, y, x 
         phy 
         phx 
         asl a 
         asl a           ; shift twice to mult index by 4 
         tay             ; accum contains bank # offset, transfer to index 
         sed             ; set decimal mode 
         clc             ; clear carry 
         lda BANKCTR,y   ; load low-byte BCD pair otherwise known as (xx,xxx,x99) 
         adc #1          ; add 1 ... we are here because a bank was retrieved 
         sta BANKCTR,y   ; store back 
         iny 
         lda BANKCTR,y   ; get next BCD pair (xx,xx9,9xx) 
         adc #$00         ; add carry in case the prior went from 99 to 00 
         sta BANKCTR,y.  ; store it back 
         iny 
         lda BANKCTR,y   ; same for (xx,99x,xxx) 
         adc #$00 
         sta BANKCTR,y 
         iny 
         lda BANKCTR,y   ; same for (99,xxx,xxx) 
         adc #$00 
         sta BANKCTR,y 
         cld 
         plx 
         ply 
         pla 
         rts 

BANKCTR: 

83 60 01 00 ; bank 0 
.. .. .. .. ; bank 1 (not shown) 
.. .. .. .. ; bank 2 (not shown) 
.. .. .. .. ; bank 3 (not shown) 
.. .. .. .. ; bank 4 (not shown) 
.. .. .. .. ; bank 5 (not shown) 
.. .. .. .. ; bank 6 (not shown) 
20 84 06 00 ; bank 7

figure 2a

figure 2b

mult’ing a (passed in bank index) 
by 4 gets us to the desired ‘record’ 

aka group of 4 BCD digits

The lone +1 
math add

Each iny 
Increments 
index to the 
more 
significant 
BCD byte

We do not display 
bank counters 

1..6 (just 0 and 7) 
but we do  tally 

them; called from 
ftchbnk

WDC 65C816 processors).  If this were running on a 
Commodore 64 or PET, ATARI, or Apple, you would 
need to do the register shuffle; transfer y to a with tya; 
push from the accumulator to the stack; then commute x 
via txa, then push that to the stack, then do the reverse 
before returning.  Bill Mensch and his friends were good 
enough to squeeze a few new opcodes and addressing 
modes into the WDC version of the classic MOS CPU. 
This subroutine is called every time a bank is accessed 
in the xordraw ball loop (8x for each ball) otherwise 
known as quite frequently!  Due to this heavy use, the 
28 innocent-enough looking instructions chew up a pile 
of cycles in aggregate, so we short circuit the call to it 
when patching for non-telemetry mode. 
Unfortunately, the calling code is located in a fairly tight 
code block which is not conducive to the patching 
method discussed in Issue #5; so our only option to 
disable without a test and branch statement is to 
overwrite the bytes at ptchpt1 (patch-point 1) with 
three nop opcodes.  They are about 3x less expensive 
than a load, compare, branch and about 10x fewer cycles 
than running this gauntlet unconditionally. 
This can be made slightly more efficient by removing 
the bolded decimal mode set and clear instructions 
below, but we are being courteous (for now) and leaving 
the modes and registers as we found them. 

For this code to make sense, an understanding of the 
BANKCTR data structure is required.  Simply, it is 32 
bytes of memory or 8 sets of 4 byte counters where each 
4 BCD bytes (when combined) can track up to qty. 8, 
base 10 digits of bank access; see the depiction in figure 
2a and the on-screen representation in figure 2b.  Note 
the transposition of BCD bytes between the two.

Code example 1 - telem01 (tallying counters with BCD math)



bcdbnk0  lda BANKCTR     ; load bank 0 counter; as noted, this code block repeats for BANKCTR+1, BANKCTR+2, and BANKCTR+3 

         pha             ; save a temporarily so we can get it quickly for the low nibble calc; our example is 83 60 01 00 
         and #$f0        ; mask off the high nibble only             ; start with  1000 0000 as example (nibble starts with 8) 
         lsr a           ; shift right (aka div by 2)                ; right =     0100 0000 nibble is now 4  
         lsr a           ; shift right again to div by 2 again       ; right =     0010 0000 nibble is now 2 
         clc             ; prepare to add by clearing the carry bit 
         adc #$80        ; add $80, the start of the Sprite bank     ; after add = 1010 0000 or $A0 hex which is the 8th sprite 
         sta $d94a       ; store to pointer for the tens digit to mid address of sprite #8  
         pla             ; low nibble retrieve from stack (the unmolested BANKCTR) 

         and #$0f        ; mask off the low nibble then do the same as above but shifting left instead of right 
         asl a 
         asl a 
         clc 
         adc #$80 
         sta $d942       ; store to pointer for the ones digit into mid addr for sprite #8       
      

This code example is the 2nd half of the equation.  We 
are accumulating the totals above and do so in a neat, 
self-contained subroutine.  The input to telem01 above 
is the bank #, and the routine manipulates the 32 byte 
BANKCTR data structure; otherwise, it minds its business.   
Here (in bcdbnk0), we read from BANKCTR bytes and 
update the sprites which are already on the screen. 
The phrase data structure (above) is being used loosely; 
there is no such thing in 6502 and most of the 
programmers I know typically do not bother with object 
notation or namespaces that some of the newer fangled 
assemblers now support.  But acting as if you have C 
lang style structs and organizing memory and code with 
the tenets of higher level languages in mind can help 
large projects stay organized. : ) 

The following heavily commented code renders one pair 
of sprite numerals on-screen.  Subsequent instances are 
identical, with the exception of the LDA (from BANKCTR 
in this case) and a pair of STA instructions (one per 
digit) to ‘offset 2’ of each sprite. (see the yellow 
highlight in table 5.1 on pg. 5 below)  On pg. 6, you can 
see similar code to display digits of the onscreen TOD 
clock which is updated from an interrupt handler. 
Table 5.1, from the F256 documentation, describes the 
sprite register format.  The sprite address pointer is 
formed from 19 significant bits spread across 3 bytes.  
We only care about the middle byte and have initialized 
the high and low to 0 (see page 4).  This will give us 
access to address in range of $00:xx00 
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The primitive nature of 6502 assembly language places the 
onus to maintain order directly on the programmer.  

Absent are linters and compiler warnings, and CPU based 
memory protection does not exist in this universe.

We sit directly on hardware, coercing circuits to do things 
that fulfill and exceed the original CPU designer’s dreams.  

Development is enjoyable because it is challenging.  
Cycle-optimized elegance is the reward.

Code example 2 - bcdbnk0 (converting from BCD values to sprite memory pointers)

As discussed, each 8 digit counter represents one bank 
and each is ordered and encoded as 21 43 65 87. This is 
followed by the same sequence for bank 1, and so on. 
This ordering may seem odd, but it is the nature of BCD 
to have the low nibble of each byte represent the lower 
order place (the ones place in "21") with the high nibble 
of the byte representing the 10's place or the 2 in "21".  
It’s also the nature of loops and indexes (the y index, for 
example) to increment.  Finally, it is the nature of 6502’s 
little endian encoding to order low-to-high. 
Indeed, processor addressing modes depend upon 
(require) low/high, and assemblers follow the rules; but 
much of the rest is convention.  BCD is only concerned 
with adding two 8-bit values and will modify carry 
accordingly.  That’s it.  It's as simple as it is brilliant. 
In the screen shot in figure 2b, bank 0 counter = 16,083 
(padded zeros not reflected here) and bank 7 = 68,420.   
If this were bank 0 and 1, BANKCTR memory would be 
ordered as follows: 
   83 60 01 00 20 84 06 00  
This represents byte #:  0  1  2  3  4  5  6  7 
... and this would continue three more times for a 
total of 32 bytes. 
To repeat, the AND’ing, LSR'ing, and math to clear carry 
and add hex #$80 in this implementation adjusts the 
middle byte of the 3 byte sprite pointer which, by 
design, begins at address of $8000 and aligns to 0 byte 
boundaries.  In the Mersenne prime example in issue #4, 
De Jong does something different; he adds #$30 (48 
decimal) to convert to ASCII, then prints to the screen 
using the kernel output of the mighty Rockwell AIM-65. 

In a subsequent version of the balls demo, we will 
refactor 120 lines of code into just a handful of 
instructions but will spend a ton of memory using 128 
sprite definitions.  The result, from a performance 
perspective, will be greased lightning as compared to the 
original which is long and boring, but works. 
We could go in the other direction and optimize for 
memory, using a table and indexed retrieval but that 
would require looping and additional cycles.  Longer 
term, the aim is to gamify the demo and we will need the 
cycles for collision detection and more. 

single 
load 

two 
store 

despite what looks like a 65C816 formatted 24 bit address, the F256 
only uses 2 of the 3 high order bits to reach all of memory.  We (mortals) 

cannot address more than 64K but VICKY can!  We are pointing to 
offsets (‘xx’) that range from $80 up through $BC aka 16 sprites of 1K.



There is nothing terribly innovative about the code 
below, but it is relevant in discussions focused on 
graphic data of one type or another.  You’ve got data,  
your F256 is hungry for data, and you’ve got to load or  
move and store it and then tell VICKY where to find it. 
The code is near identical to the character set ‘load’ 
routine that we used in the De Jong Mersenne Prime 
example in issue #4.  In that program, we let 64TASS 
incorporate the old school Commodore PET font inline 
with our code and then copied it up into I/O bank 1 of 
$C000.  But let’s start over. 
The routine uses two pairs of zero page (low byte/high 
byte) addresses and exploits the indirect y-indexed 
addressing mode to move sprite data from a given 
location in memory to the desired destination ($8000) 
that we depend upon in other parts of the program (the 
bcdbnk* sprite pointing code discussed on page 3). 
A mishap in this calculation will yield visual garbage 
(aka, the math in the above code to not point to the 
correct sprite, or to any sprite for that matter).  
Sometimes this is entertaining; most often, it’s 
frustrating.  A miscalculation can also be the cause of a 
nasty system crash or wild mishaps in cases where 
opcodes and data gets trampled upon. 
Once the sprites are copied, we can use the memory it 
previously occupied to overlay code or to store and use 
other data.  In the ‘80s, games such as Space Taxi would 
use this technique to load additional game levels and to 
maximize graphics and game code for a richer 
experience.  Modern-vintage style games such as Lair of 
the Lich King by Micah Bly and PETSCII Robots by 
David Murray also use this technique. 

sprload     lda #<sprbmp 
            sta FROM_PTR 
            lda #>sprbmp 
            sta FROM_PTR+1 
            lda #$80 
            sta TO_PTR+1 
            stz TO_PTR 
            ldy #$00 
sprloop     lda (FROM_PTR),y 
            sta (TO_PTR),y 
            iny 
            bne sprloop 
            inc FROM_PTR+1 
            inc TO_PTR+1 
            lda TO_PTR+1 
            cmp #$ac 
            bne sprloop 
            rts 

Here are the pointer definitions for FROM_PTR and TO_PTR.  Note the.fill and the use of ‘?’ instead of hard addresses. 
* = $0 
.fill           16      ; reserved for MMU_MEM_CTRL ($00) and MMU_IO_CTRL ($01) plus MMU_MEM_BANK_0 through MMU_MEM_BANK_7 
.dsection       zp      ; declare section named "zp" aka zero page (from $0; well… from $10 since we reserve 16 bytes) 

.section zp 

  FROM_PTR .word ? ; two bytes which will be our low-byte / high-byte pair 
  TO_PTR  .word ? ; same 
  BLNKFLG .byte ? ; blinking colon state 
  BANKCTR  
.fill   32 ; 32 byte 'data structure'  
.send                    ; zp (zero-page) section end 
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… and stop at page $ac.  The math is 
$ac - $80 (hex) = $2c (hex) aka 44 decimal. 

44 divided by 4 pages of 256 = 11 (1K per sprite) 

(but note, we start copying from a 0th page for sprite 
#0; the final iteration of consequence, considering the 

^2 math is the 10th for sprite # 10;  0 to 10 is 11 

The outer loop iterates and then tests/compare to $ac.  
The loop is actually copying from $8000 to $abff.

We load/copy pages 
 from: sprbmp 
to: $8000 … 

The bottom-left of page 1 illustrates an alternative; the 
“no-load” method.  In this case, 64TASS assembler 
directives are used to align data with desired starting 
addresses.  The assembler calculates and pads the object 
file to ensure alignment. 
The benefit is we avoid having to write and execute code 
to perform data copy; the drawback is our binary file is 
potentially bloated.  We did this in the original version of 
our balls demo which explains why our file size was a 
whopping 32K.  At one end of the binary ($8000, also the 
load address) was graphic sprite data; in the middle was 
the $E000 machine code which included a modest 
amount of embedded table data; at the top end were 6502 
vectors between $FFFA-$FFFF.  All in all, 32K for the 
bouncing ball demo was wasteful, and I am sorry. : ) 
In a perfect world, we aim to organize our code, data, 
variables, and other assets so they reside in a tight blob* 
of memory that can be loaded from storage, initialized, 
and executed with a minimum of fuss and resources.  
Usually, it’s preferable to have a smaller file to load and 
code to relocate, where applicable.  Initialization routines 
that perform the copy are usually faster than file load 
routines, even from SD Card.  At least, that’s the way it 
has been. 
In our next version, we will load and locate larger chunks 
of graphic data using VICKY’s DMA to do the heavy 
lifting; it is capable of moving many MB/sec. which is 
lightyears faster than a single-MHz. 8-bit CPU.  For 
science, we will measure the time it takes to move 32K 
of data using standard 6502 instructions (the code below) 
versus using DMA.  We will do this for science, because 
we can.  We are computer scientists!

Code example 3 - sprload (sprite loader / copy routine: to load or not to load?)

… with the exception of the 
BASIC816 examples published 
in issues 1 through 3, all of our 
code has been in .bin ‘blob’ 
files.  Shortly, we will be moving 
to .PGX and .PGZ files, the latter 
of which allows for multi-
segment relocation upon load.  
Until then, we will make believe 
it is still 1982 and move data to 
where we need it to be. 

*

https://wiki.c256foenix.com/index.php?title=Executable_binary_file


Code example 4 - sprinit (initializing graphics mode and sprites) 
In this example we configure VICKY’s master control register to enable sprite graphics then populate registers for 18 
sprites in the process, re-using some of the digit placement data from the bank counters of issue #5’s demo.  We also 
prepare for RTC display; specifically, the time-of-day, replacing the bank 7 counter with colon delimited digit pairs. 
In ‘balls’, sprite registers were populated through a lengthy sequence of fall-through immediate mode load and store 
instructions.  Here, we pull sprite config data from .byte statements using a loop to increment sprite-by-sprite until a $FF 
is found in the first column of the table.  Since bit 7 of byte 0 is unused (see the legend beneath table 5.2), the existence of 
this value will not occur in normal use.  The commented source and table 5.1 below, covers the rest. 
The Foenix Marketplace contains a single .zip file containing the source, assembled binary, and an updated sprite set (a 
few special symbols are added to the original set of numerals; the original comma has been shifted from the 11th position 
to the 16th to preserve the natural ASCII order of a subset of the special symbols for which the all important ‘:’ is part of)
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start  stz MMU_IO_CTRL 
  lda #$0C  ; use #$2C for mixed bit map and sprite mode 
  sta VKY_MSTR_CTRL_0 ; Save that to VICKY master control register 0 
  ldx #$00 
sproutr  ldy #$00 
sprinnr  lda sprdata,x 
  sta $D900,x 
  inx 
  iny 
  cpy #$08  ; process 1 ‘record'   
  bne sprinnr 
  lda sprdata,x  ; pre-check for end 
  cmp #$FF 
  bne sproutr 

;         __.|sz|sz|lay|lay|lut|lut|enable (see legend) 
;        | 
;        |      addr-high            x-low 
;        |    addr-mid   \          /   x-high 
;        | addr-low   \   \        /   /   y-low 
;        |______   \   \   \      /   /   /   y-high 
;               \   \   \   \    /   /   /   / 
sprdata .byte $01,$00,$80,$00,$FF,$00,$52,$00 ; sprite 0  : ones  
 .byte $01,$00,$80,$00,$ED,$00,$52,$00  ; sprite 1  : tens 
 .byte $01,$00,$80,$00,$DB,$00,$52,$00  ; sprite 2  : hundreds 
 .byte $01,$00,$80,$00,$C9,$00,$52,$00  ; sprite 3  : thousands 
 .byte $01,$00,$80,$00,$B7,$00,$52,$00  ; sprite 4  : ten-thousands 
 .byte $01,$00,$80,$00,$A5,$00,$52,$00  ; sprite 5  : hundred-thousands 
 .byte $01,$00,$80,$00,$93,$00,$52,$00  ; sprite 6  : millions 
 .byte $01,$00,$80,$00,$81,$00,$52,$00  ; sprite 7  : ten-millions 

 .byte $01,$00,$BC,$00,$CB,$00,$52,$00  ; sprite 8  : thousands-comma 
 .byte $01,$00,$BC,$00,$95,$00,$52,$00  ; sprite 9  : millions-comma 

 .byte $01,$00,$80,$00,$F2,$00,$BA,$00  ; sprite 10 : ones-seconds           byte 0 legend 
 .byte $01,$00,$80,$00,$DF,$00,$BA,$00  ; sprite 11 : tens-seconds           7 bit - unused 
 .byte $01,$00,$80,$00,$C9,$00,$BA,$00  ; sprite 12 : ones-minutes       6, 5 bit - size (see table 5.2) 
 .byte $01,$00,$80,$00,$B7,$00,$BA,$00  ; sprite 13 : tens-minutes       4, 3 bit - layer (0..3) 
 .byte $01,$00,$80,$00,$A1,$00,$BA,$00  ; sprite 14 : ones-hours        2, 1 bit - color lut (0..3) 
 .byte $01,$00,$80,$00,$90,$00,$BA,$00  ; sprite 15 : tens-hours           0 bit - enable (1 = on) 

 .byte $01,$00,$A8,$00,$CA,$00,$BA,$00  ; sprite 16 : min/sec-colon 
 .byte $01,$00,$A8,$00,$A2,$00,$BA,$00  ; sprite 17 : hr/min-colon 
 .byte $FF                             ; end-of-data token

We are angling to tie the RTC periodic interrupt timer to query the time-of-day of the RTC, itself.  The “PIE” periodic-
interrupt-enable bit turns on this function, obeying the “RS” rate nibble which can be set from 500 ms. all the way 
down to 30.5175 us. (microseconds).  The fact that we are notified every 1/2 second comes in handy not just because 
it’s a reasonable interval to update the clock, but because it provides a lever to use an extremely simple piece of code 
to flash the ‘:’ sprites between the digit pairs. 
The Texas Instruments bq4802 does most of the work, but VICKY integrates the clock ICs signaling into its interrupt 
scheme and maps the R/W registers into memory on the I/O page of $C000 at documented addresses.  
The use of IRQ handlers for graphics versus device servicing purposes is a broad topic and we won’t do it justice here; 
but to preface the conversation, sometimes a use-case calls for deterministic time intervals, useful for graphics and 
game action; other times, IRQs are used to read device queues to prevent overflow conditions.  The WDC 65C22 
circuit also has timers that we can use for interrupts, but the RTC is easy and reliable. 
Operating systems have multiple interrupts active simultaneously and yet, the 6502 has but a single interrupt request 
line, so how is this managed?  Again, VICKY “to the rescue”; as you will see on pg. 6, she manages over a dozen 
interrupts across 3 bytes worth of mask and pending bits, so we can specify which event(s) will even bother the IRQ 
line and once triggered, identify the responsible party.  In the ‘no-kernel’ model, we commandeer the entire machine 
but mask and check ‘pending’ as if there might be other interrupts in use; it is good practice to do so.

$D900 is the base address 
of the sprite register range 

(manual chapter 5)

,

https://www.ti.com/lit/ds/symlink/bq4802y.pdf?ts=1677859558985&ref_url=https%253A%252F%252Fgateway.zscaler.net%252F


irqhand: 

 pha 
 lda MMU_IO_CTRL 
 pha 
 stz MMU_IO_CTRL 

 lda #INT_RTC  ; Check for RTC flag 
 bit INT_PEND_1 
 beq return  ; If not, return 
 sta INT_PEND_1  ; If so, clear RTC flag 
 lda $d69d  ; Reset RTC status bits 

 lda BLNKFLG 
 eor #$01 
 sta $d980  ; sprite enable for colon 
 sta $d988  ; .. and for other colon 

 lda $d690  ; seconds 
 pha   ; digit 
 and #$f0   ; pair 
 lsr a 
 lsr a 
 clc 
 adc #$80 
 sta $d95a 
 pla 
 and #$0f 
 asl a 
 asl a 
 clc 
 adc #$80 
 sta $d952 

 lda $d692 ; minutes 
 pha  ; digit 
 and #$f0  ; pair 
 lsr a 
 lsr a 
 clc 
 adc #$80 
 sta $d96a 
 pla 
 and #$0f 
 asl a 
 asl a 
 clc 
 adc #$80 
 sta $d962 

return: pla 
 sta MMU_IO_CTRL 
 pla 
 rti
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Code example 5 - irqreg and irqhand (real time clock interrupt registration and handler) 
The code on the left installs the handler, masking all but the RTC interrupt; the code on the right is the handler itself, and 
does three things:  a) checks to see if the interrupt is a result of the RTC timer (and not a spurious serial port or PS/2 
interrupt); it b) toggles two sprite enable bits leveraging the eor instruction; and c) clears the interrupt and reads the RTC 
status bit, thus clearing its trigger in order to get ready for the next.  For more information, see the article on setting the 
RTC on the C256U+ by Ernesto Contreras (issue #3) and Peter Weingartner’s F256 manual (chapter 10 - tracking time).

irqreg: 

sei 
lda #<irqhand 
sta VIRQ  ; $fffe 
lda #>irqhand 
sta VIRQ+1 ; $ffff 

; Mask off all but the RTC interrupt 
lda #$ff 
sta INT_MASK_0 
and #~INT_RTC 
sta INT_MASK_1 

; Clear all pending interrupts 
lda #$ff 
sta INT_PEND_0 
sta INT_PEND_1 

; Re-enable IRQ handling 
cli

This code (a simplified 
example) might look familiar; 
it was stolen from the F256 

github example
Pro tip: save yourself some 

typing and grab it, and other 
manual examples here

3 identical code blocks with 
only the subject (mem addr of 

RTC element), and target (sprite 
mid-addr pointer)

3 identical code blocks with 
only the subject (mem addr of 

RTC element), and target (sprite 
mid-addr pointer)

Identical code blocks which 
differ only in source (mem addr 
of RTC value), and sprite target 

(mid sprite-addr ptrs) 

What’s next? - dealing with a growing backlog 
It’s getting longer (we’ve gone off-roading again), but to 
join a few threads together, the following represents best-
current-thinking of how to bridge recently discussed topics. 
We covered item ‘i.’ (The RTC) above but still need to 
address issue #4’s ‘g.’ (keyboard input) along with item ‘k.’, 
which revisits redefined characters - “VIC-20 style”; So the 
early March feature will be focused on the PS/2 keyboard. 
After that, we will discuss graphic (sprite and bitmap) 
workflow and then pickup the Flash! issue #5 ‘balls’ demo 
and item ‘l.’ (reading ATARI style joysticks) with some of 
the discussed telemetry enhancements and a low (no) 
budget gamification of a platform classic, just in time for 
VCF East, April 14-16.  At least that’s the plan for now!

lda $d694       ; hours 
pha             ; digit 
and #$70        ; pair 
lsr a 
lsr a 
clc 
adc #$80 
sta $d97a 
pla 
and #$0f 
asl a 
asl a 
clc 
adc #$80 
sta $d972

The 64TASS tilde ‘~’ 
assembler directive inverts the 

bit mask ensuring that only 
the RTC interrupt is registered 

(all of MASK_0 is blocked)

The tables above represent 
the anatomy of (2 of the 3) 
interrupt registers (the 3rd, 

not shown, includes 4 bits for 
low level IEC control lines 

and 4 bits which are unused) 

The table to the left details 
memory addresses for the 
PENDING and MASK bytes 

leveraged in our code. 

The tables above represent 
the anatomy of 2 of the 3 

interrupt bytes; (the 3rd, not 
shown, includes 4 bits for 
low level IEC control and 

data lines) 

The table to the left details 
memory addresses and the 
PENDING and MASK bytes 

leveraged in our code. 

Wait! Why 
#$70 and not 

#$F0?  

Because ‘bit 7’ 
of the hour 

register 
represents  

AM/PM.  If we 
don’t mask it, an 
8 will appear in 

the 10’s digit 
and that would 

be weird !!

https://github.com/pweingar/C256jrManual/tree/main/examples/ex_interrupts
https://github.com/pweingar/C256jrManual/tree/main/examples
https://github.com/pweingar/C256jrManual
https://vcfed.org/events/vintage-computer-festival-east/
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