
New year, new format. Welcome to Foenix Rising FLASH!. Each
installment will feature one or more articles; more timely, easier to consume,
and faster prod-to-press time. Same great taste, less filling.

(FLASH!)

Memory Management on the F256 Jr.
Learn more about VICKY’s MMU and paging - squeezing a 64K bitmap into ~8K of memory

Spoiler: we do not live in a perfect world
Subtracting the space reserved for the 6502 stack, jump
vectors, and MMU control registers leaves us with about
1K of memory for all of our user code and potentially, a
kernel. This is far from ideal. But the F256 Jr. is not a
traditional 6502 architecture. On the next page, we will
introduce VICKYs MMU; and yes, it is ‘to the rescue’.
The code example on the pages below was ported from
Stephen Edwards’s bouncing ball demo (‘balls’), featured
in an Advanced 6502 YouTube video tutorial produced for
VCF, the Vintage Computer Federation. In less than 35
minutes, Stephen introduces the 6502 and discusses the
intermediate and advanced coding techniques leveraged.
The demo employs a set of Apple II techniques to render
shapes on a bitmapped display, effectively bouncing 30
independently moving objects across a high-resolution
monochrome screen, complete with simulated gravity. It
is a fair amount of work for an Apple II and to an extent,
also challenging for the F256.
Considering ~1 MHz. of clock speed, vintage systems
struggled to move data around a bitmapped field. In the
beginning, there were no sprites and limited hardware to
help. Everything was done using 74-series TTL circuits,
discreet electronics, and in Apple's case. some innovative
coding techniques.
In this article, we will combine Stephen’s code (written
for a 280 x 192 monochrome display) and Peter
Weingartner’s gradient tint bitmapped graphics example
from chapter 4 of the F256 Jr. manual.
Across the next 7 pages, we will:
• Discuss VICKY’s MMU in support of the F256 Jr.

architecture, including extended memory and the
[future] cartridge option

• Flash back to the early days of the Apple II and discuss
the memory map challenge that the Apple II bestowed
upon developers and how they dealt with it

• Discuss the basics of F256’s bitmapped graphics, and
apply Apple techniques to the Foenix by way of a
‘balls’ demo that goes a few steps further

F256 - Balance by design
I recently sat down with my 12 year old, a pencil, and a
blank sheet of paper. I was intent on conveying the triad
of compute performance; that being, the balance between
CPU, Memory, and I/O. My diagram premised that a
bottleneck must exist within one component of the
architecture; else, an infinite amount of work would
complete instantaneously; physics will not allow this!
I explained to her that soon after the dawn of time (the
January 1st, 1970 Unix epoch), microprocessor
introduction and innovation was fast and furious,
bringing predictive branching, instruction prefetch,
multi-level caching, wider and faster buses, and media
density improvement, stiction reduction… (my daughter
walked out at that point; back to her Nintendo Switch).
Please afford me this restart: The F256 Jr. is well
balanced. When Stefany sat down with Altium designer
to create an affordable but capable 65C02 based
platform, she considered not only component availability
and a given price point, but rightsizing the graphic
capabilities, I/O, audio functionality, and importantly, the
need for a memory management unit (MMU).
As it turns out, a 6.3 MHz. clock is generous when
combined with the power and performance of VICKY
with her sprites, tiles, color palettes, and other features.
But from a bitmap graphics perspective, there is no
getting around the fact that Foenix 24-bit color (in a 256
color palette) applied to a bitmapped screen requires as
much as 76,800 bytes of memory. Against the 65C02’s
64K footprint, this presents a challenge.
In the prior issue of Foenix Rising, we discussed the Jr.’s
memory map and byte ranges that were generally
available for use, versus “off-limits”, or nearly so.
We are here today to discuss how to leverage the VICKY
MMU in a bitmapped screen use case.
To restate the problem: [the lesser of the F256 Jr.’s
bitmapped modes] 320 by 200 by a depth of 256 24-bit
colors requires 64,000 bytes which, in a perfect world, is
mapped in a contiguous block memory.

Jan. 2023 / F5

101/2023 - F5

https://www.youtube.com/watch?v=WEliEAc3ZyA
https://vcfed.org/
https://github.com/pweingar/C256jrManual/blob/main/tex/f256jr_ref.pdf

201/2023 - F5

The F256 Memory Map from an MMU architecture perspective
In Foenix Rising issue #4 (pgs. 4 and 17; item b.) we introduced, and later wrote code to manipulate, the F256 Jr.'s I/O
banking. In the diagram below, we will illustrate this architecture pictorially on the left side of page, and then depict the
general (RAM and FLASH) MMU banking against the backdrop of the full (potential) memory map.
To review, a 65C02 CPU can only address 64K of memory, however, VICKY's MMU functionality, controlled via zero
page locations $00 and $01, allows FOUR user controllable MMU look up tables (LUTs), each of which may mix and
match up to 8 pages of memory in nearly any configuration from the total pool of available memory represented on the
right side of the diagram below. Table 2.4, borrowed from Peter’s F256 Jr. manual, details the register anatomy.
Eight zero page registers ($08 .. $0F), named MMU_MEM_BANK_{x}, correspond to the 8 banks of 8K in the platform’s
64K memory map. In the time it takes to activate a LUT (store a value in $00; about 3 cycles), VICKY realigns memory to
the desired configuration without missing a beat.
The MicroKernel leverages this feature extensively, swapping back and forth between MMU LUTs when select kernel calls
are made. Most of the time, the MicroKernel stays out of the user's way, operating within a single 8K bank of code (from
FLASH), and servicing simple user calls from a view of its RAM which is hiding beneath the I/O segment. Interrupts and
more advanced user calls cause the kernel to save the user's state, switch to MMU LUT0 (where all of its code is
accessible), perform the operation, and then seamlessly switch back to the user's LUT and code. When talking to the SD
Card, the kernel makes a further switch into MMU LUT1 where 16k of FAT32 code and 8k of FAT32 RAM are mapped.

The F256 RAM / Cartridge expansion interface
The F256 contains a slim PCIe x1 connector, capable of accommodating 256K of RAM or a rewritable (non-volatile)
FLASH cartridge of up to 512K (pending release). The 256K RAM footprint is depicted within the green rectangle above.
While the Jr. form factor does not host a ‘cartridge slot’ per se, the adapter interface is identical to the F256K. Regardless
of F256 model, either form of media will appear beginning at bank $80. The optional cartridge is ideal for software
distribution or for organizing your own data and binaries; yet another choice to add to the SD Card and IEC peripherals.

$1:0000

$0:FFFF

Shapes such as a square could be defined and moved
around the screen; but for any real action, developers
came to rely on ‘pre-rendered’ and in some cases, ‘pre-
shifted' shapes accompanied by optimized assembly
language to drive them. The balls demo does this 30-fold.
For reference, here is a page from the Applesoft
programing manual that discusses the use of vectors in
defining a shape; once defined, a shape may be
manipulated with SCALE and ROT commands. Tedious?
yup. Powerful? Sort of. Usable? Not for our purposes;
and many developers felt this way.

I am writing to you from the 21st century where we
acknowledge that we are spoiled. But in our example, we
will more or less pretend that it is 1977 and leverage the
algorithm developed for the original Apple version.
We will ignore the fact that we have 64 sprites at our
disposal and other tricks; indeed, we have a clock that is
~6x as fast as the original Apple II, but we also are
dealing with ~8x as much data (a byte per pixel) and we
will need to be frugal in how we spend cycles.
And as always, there are a few self-imposed constraints
that we will introduce, to be addressed next time.
With this background, we are ready to get started. But
first a note of thanks to Stephen Edwards. I stumbled
upon his video a year ago, and leverage it heavily for this
installment of the Foenix Rising Project.

Revisiting Apple’s text and graphics for comparison
If you watched the linked 'balls' video above, you
absorbed a break-neck paced primer on 6502 and an
introduction to Apple II graphics. If you didn’t watch it,
you should; not only because it’s interesting and well
produced, but because it focuses on 6502 history and the
assembly language applicable to our F256 platforms.
The front half of the video discusses language heuristics,
use, and theory; the back applies it to the aforementioned
bouncing ball demo which we will port.
The images and slide assets represented within the video
are available from archive.org via this link, so you can
download them for additional study; I’ve pulled one slide
to facilitate discussion and to highlight one piece of a
thorny problem that we will need to deal with.

The task in this case is to reshuffle and step over the 8
‘wasted’ bytes at the end of each 120 bytes. We are not
troubled that 8 bytes are essentially wasted; rather, that
we have to compensate for complexity of interleaving.
As explained in the video, this issue also applies to the
Apple II high-res mode, but to a greater extent.
A looped iterator with conditional math can be leveraged
to resolve this, but is too expensive considering the need
for performance. A better option is to throw memory1 at
the problem via the table discussed in the video.

Shapes without sprites; nothing was easy in 1977
The Apple II did not have hardware based player/missile
graphics or sprites; this tech was far from common in
1977, but video consoles and commercial arcade were
beginning to innovate in this area. Apple’s killer feature
was high-resolution color. (competitors were peddling
low-res monochrome character graphics, at best)
By 1978, Applesoft BASIC was released and considered
stable. And it introduced integrated Shape Tables to
BASIC. Five commands leveraging a cryptic set of
vector rules, coded in 6502 and callable. DRAW,
ROTate, SCALE, and others were just a call away. But
golly was it slow. Turtle-graphics slow!

Representation of the Apple II text-to-memory alignment;
notice 8 bytes at the end of each 128 byte (3 screen line)

block; (this is the simpler of the two challenges)

301/2023 - F5

Stephen Edwards is a CAL Berkeley PhD and tenured
Computer Science Professor teaching at Columbia

University in New York. Having met at a recent VCF,
we’ve kept in touch and he was good enough to grant

me permission to feature his work in this tutorial.

1 Via low byte / high byte table of 192 x 2 (384 bytes)

https://www.youtube.com/watch?v=WEliEAc3ZyA
https://archive.org/details/Stephen_Edwards_6502_Assembly_Language_Programming

401/2023 - F5

Platform comparison
Here is a quick table outlining differences in platform
specifications. This is a partial list of capabilities; five of
these six measures are relevant to our discussion:

The Apple II was also burdened in a sense, since it has a
ROM based kernel and Integer BASIC image onboard; it
also has an IRQ servicing routine to scan the keyboard
and perform general housekeeping.
We are not relying on this and in fact, do not even have
operating code resident in our memory map. We also
have IRQs disabled. The goal is to run on bare metal to
the greatest extent possible.

Porting notes
With an aim to honor the original, we limited our scope
to a) accommodate platform differences (hardware and
constants), b) perform bit / byte conversation, and to
c) leverage the VICKY MMU for bank swap.

Here is a short list of some of the work tackled:

• Changes to port from the Merlin source to 64TASS
including zero page addressing for dynamic allocation
(step around reserved memory) to accommodate
screen geometry diffs, video mode init, palette
instantiation, and startup of the no-kernel machine.

• Center a framed window on the 320 pixel wide Foenix
screen. Since we could not easily support a 9-bit
column model (without major surgery), we swung the
resolution from 280 x 192 to 256 x 192.

• Modification to border draw (vline and hline)
routines, using purple and appropriate dimensions.

• Adjust the LKHI and LKLO tables to accommodate
paged (versus absolute) addressing. Each of the eight
8K memory banks map into address $2000.

• Addition of the MMU subroutine for frame draw
which, upon select, fetches the associated 8K bank
(see fig. 4a) into $2000 via MEM_MMU_BANK_1. There
are several instances of playfield lines which span 8K
boundaries (e.g. the beginning of the 320 pixel line is
at the end of one 8K bank and continues through the
start of an adjacent bank). We discuss this on pg. 6.

• Finally, modify the xorball routine by a) adding
inline ftchbnk code and b) expanding code to work
with 64 whole bytes per object rather than bits. This
requires added instructions, and leaves us with ATARI
PONG shaped ‘balls’ rather than slightly rounded edge
balls. We will cover this in detail on the next page (it
was messy and somewhat expensive but was the
correct choice for our minimum viable version).

Apple II Foenix F256 Jr.

CPU 1.023 MHz MOS
6502

6.29 MHz WDC
65C02

Primary RAM [up to] 64K 512K nominal

Nominal
resolution

280 x 192

(when monochrome)

320 x 200

(we use 256 x 200)

Colors at max
resolution 1 palette of 255 of

16.7MM RGB

Character
matrix

7 x 8 pixel

(40 x 24)

8 x 8 pixel

(40 x 25 / 80 x 50 /

80 x 60)

Add’l graphics
modes and
features

(out of scope1)

Limited color at 1/2
HIRES resolution

(140 x 192)

sprites, tiles,
layers, scrolling,
raster interrupts,
DMA, math block

What’s going on here?
• 64,000 mapped pixels representing the 320 x 200

bitmapped screen, pieced together in 8K banks

• VICKY sees bitmapped memory as a contiguous block;

registers VKY_BMO_ADDR_L, M, and H at $D101 to $D103
respectively, point to the base addr. of $01:0000

• The colors to the left are arbitrary other than red, green,
and gray having the same offset/transition point. (you will
see some of this in LKHI and LKLO tables as well)

• The highlighted green bank ($0D) represents a bank
hypothetically mapped to $2000 (as the 65C02 sees it) but
this memory is really $01:A000 - $01:BFFF

• The bottom of the screen (8th bank) is only partially full
(see the light grey area at the bottom of the last red stripe.
This is because the screen data is less than 64K (base 2).
This area is unused. (see the thin red jagged border)

VICKY needs to know our bitmap base ($01:0000);
This is one byte more than $FFFF; just North of 64K

fig. 4a - Foenix F256 bitmap display memory and addressing notes (revisit page 2 for relevant callouts)

figure 4a

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

1 considering the diff (and 45 years) between these two
platforms, the selected scope is a good center point; we will
tackle some of the more progressive VICKY features soon

The new enhancements will inevitably require use of
VICKY DMA and specifically, its 2d copy, but this option
is too creepy for today (Halloween is 10 months away).
Otherwise, the original shifting code was left in place, but
the image is a full byte per pixel (%11111111) so has no
effect. The result is a square object that moves smoothly
with no beginning or end, and it's a solid color.

We do like PONG around here. Jay Miner (yet another
pioneering and innovator) was instrumental in the
development of the TIA IC within the VCS (2600) and
was indirectly responsible for some of the earliest home
console games. Of course, Jay went on to Amiga,
developing some industry leading capabilities that were
far ahead of their time.

Byte versus bit per pixel and an efficiency give-back
For better or worse, the F256 screen is ~8x as large from a
memory perspective due to the aforementioned color. In
order to compensate for the difference, we had to
transform the following code to deal with 8 bytes at a
time rather than one byte for each of two original coarse
ball footprints (BALL0 and BALL1).
To resolve this, we ended up giving back some of our
6.29 MHz. performance advantage in the worst passage of
code (the tight and fast bitmap rendering routine).

Consider the following:
; (GBASL, GBASH) = row address
; Y = byte offset into the row
; X = index into sprite tables

 lda (GBASL),y ; 5 cycles
 eor BALL0,x ; 4

 sta (GBASL),y ; 6

 iny ; 2

 lda (GBASL),y ; 5
 eor BALL1,x ; 4

 sta (GBASL),y ; 6

vs:
 lda #$08 ; 2

 sta XSPCNTR ; 3

xsploop lda (GBASL),y ; 5

 eor BALL0,x ; 4

 sta (GBASL),y ; 6

 iny ; 2

 dec XSPCNTR ; 5

 bne xsploop ; 3, if branch is

	 	 	 taken; otherwise 2

In a sense, this is an apples-to-oranges comparison
because the requirements differ, but the aim is be as close
in cycle usage to the first block of code as possible.
As written, the F256 version consumes 6.375x as many
cycles in this passage of code, and does so for each
horizontal stripe of each ball on the screen. There has got
to be a better way, and the better way is: brute force.
What if we used 8 groups of lda, eor, sta, iny
instructions (bolded above) instead? The answer is, it
will save plenty (68 cycles) and reduce the difference to
~4x. It consumes 48 more bytes but we are saving 56
bytes by not using the BALL1 data.

About fetch-bank (ftchbnk)
In the balls video, references are made to friendly and
unfriendly numbers and about Woz’s design decisions in
mapping memory to video, use of a 4-bit adder circuit,
and related matters.
This topic is steeped in history. Aboriginal 8-bit design
engineers struggled to deliver innovation at low cost.
Components and board real estate was expensive. The
punchline is that neither the Apple II, nor F256 “make
life easy for the programmer”. For this example, we
could have used sprites, DMA, tiles, the math block, and
other features; that would have made life easier.
Where a fairly basic lookup table was helpful in
managing around the Apple II’s foibles, we will adopt
and code a feature which tracks horizontal video scan
lines (192 out of 200 of them) to reconcile the fact that
hires memory is physically stored outside of the 16 bit
addressable range; and we will use VICKY’s MMU to do
it. To honor the original program, we will use the same
table lookup methodology; in fact, we need it. This is
the purpose of the fetch-bank routine and its associated
192 byte pre-calculated line-to-bank table.
Simply, armed with the screen line number (available in
HGRY), a call to ftchbnk indexes into the nth byte of our
table and returns the bank number which is plugged into
the MMU LUT for the associated memory bank.
The tables we used were derived using good old
fashioned Visicalc, I mean, Microsoft Excel :). You can
download the table from the Foenix Marketplace; inputs
including the baseline of $2000, 192 lines, a 32 pixel
offset (for centering), and 320 pixel ‘stride’ between
rows was encoded within a few simple Excel formulas.
We could have written Python to do this, but didn't want
to waste any brainpower or cycles on that; I’d rather
invest energy in 6502 coding.
A few 192 columns of data later (we don’t utilize the last
8 horizontal lines), our tables are complete and a simple
copy/paste into .text statements in the source replaces
the hex directive of the Merlin assembler.

Ball versus PONG ball
Stephen’s code goes to some length to use shapes with
rounded corners, actuating pixel shifting to create the
effect of smooth motion on the horizontal axis. The
technique is similar to smooth scrolling on the
Commodore 64 which leveraged the VIC-II hardware for
smooth (pixel-by-pixel) movement and every 8 steps,
shifts the entire character field one whole character,
resetting the fine pixel shift. We've just got 320 good old
fashioned pixels to deal with, so an easy change to the
constant allowed us to keep most of the code as is. Some
of it behaves differently, but the difference is not visible.
When we revisit this project in future, we will convert to
something a bit more interesting via animation (perhaps
a tribute to Drelbs; anybody remember that?). For now,
the color palette is enough and we will invest our efforts
in performance measurement and code up a simple UI.

501/2023 - F5

32 cycles,

single pass

25 cycles by count

Iterates 8x

Total: 204 cycles

https://en.wikipedia.org/wiki/Jay_Miner
https://en.wikipedia.org/wiki/Television_Interface_Adaptor

Telemetry - counter accumulation and display
This first version of the Foenix port includes a telemetry
hook and assets to display the frequency of MMU access
with a pair of onscreen counters (see pic on pg. 8).
The upper counter is associated with bank $08 (first 25
lines of the screen) and the lower, bank $0F. Counters are
updated once per frame1. You’ll notice updates to the
upper increase only as objects cross into that bank of
memory. (the bottom counter is more active).
The standard, optimized version of this program includes
a few bytes of placeholder code that allow telemetry to be
enabled without branching or decision statements.
The following is a theoretical example of how this works:
 and #7
 bne xsplot
plug rts (1 byte)
 nop (1 byte)	 ; normally we will never get here
 nop (1 byte)
 rts

… and plugged w/3 bytes, [20, <talyrtn, >talyrtn]:
 and #7
 bne xsplot
 jsr talyrtn ; patched 3 bytes to jsr to the costly
 rts ; tally routine, then rts as above

To revert, opcode and operand bytes are pulled from
a .byte $60, $EA, $EA statement and plugged into
memory, reclaiming the efficiency of the original.
The MVP release does not include an option for switching
back and forth but a subsequent version will have a basic
user interface to control this, and more.
We will also be implementing a FPS calculation; the
count of frames divided by whole seconds as tracked
against the RTC (real time clock) circuit. It is anticipated
that partial seconds against a low number of frames will
yield an FPS that is not very accurate since we will only
look to fetch time every 256 interrupts (4-5 seconds); but
as soon as a few dozen seconds elapse, objects reach
equilibrium and FPS stabilizes. (evident by the bottom
group of objects losing height to creep along the baseline)
Today, you can increase the number of objects by
changing NBALLS (default 30) and re-assembling. By
choosing a high number (maybe 90), you’ll be able to
clearly see that the simulated gravity routine is not very
smooth. Fast moving objects approach the bottom by
skipping pixels; as they reach apogee, they slow to single
pixel movement. The action might be a bit jumpy, but
your eye is naturally drawn to the top of the screen, where
pattern spotting becomes an enjoyable pastime.
An alternative to this type of gravity algorithm is to write
the be-all/end-all time slicing engine to smoothly dispatch
clock cycles, prioritizing the movement of faster moving
objects a few pixels at a time before slower moving
objects are dealt with.

Other performance notes and a pesky issue to resolve

The fetch-bank routine, since it's called for each
horizontal line of every ball, has a cost; but we would not
be able manipulate memory anywhere near as fast
without it. The time it takes VICKY to map in a new
MMU look up table, or even to instantiate changes to an
existing table is immeasurable (the first instruction to
attempt to measure it will consume more cycles than for
VICKY to just do it).
When we made the design decision to not use the math
block features of VICKY (explained briefly below), we
gave up on the dream of only using 8K of our base
memory for the $2000-$3FFF partial bitmap footprint.
The seams between memory banks exist in 7 zones
vertically. This is where a horizontal line is shared
between two 8K banks (see the stepped lines and call-
outs in figure 4a). Left alone, this casts a dark line,
visible as an object passes through. This is problematic.
It occurs because bank numbers are based on line
numbers and we make the incorrect assumption that all
pixels on a given line are in the same bank. It does not
pose a problem for ~25 of every 26 lines, but is a corner
case that we will need to make accommodations for.
There are at least four ways to solve for this:
a) write conditional code to detect and accommodate

these anomalies (which will occur hundreds or
thousands of times per second)

b) unconditionally fetch the +1 bank; then allow the
existing (GBASL),y code to do its job

c) perform the lookup and fetch for every pixel, not just
once per line per object (this is inefficient, and ugly)

d) use VICKY’s math block feature, even though we
said we wouldn’t. Remember the premise; keep as
much of the original code as possible; tables and all.

The winner is (b). It’s easy and efficient, however on the
surface, it seems wasteful. If we used most of main
memory for code and data on a normal 6502 machine,
wasting the balance of 8K would be a tragedy. But here,
the time it takes to quickly bank in, access memory, and
bank out the added 8K is negligible; relatively speaking.
It is akin to doing a pile of work in zero time! We own
this machine and have loads of resources. Life is good!

601/2023 - F5

A few words about math block capabilities:

• The math block is a set of VICKY functions that
perform high speed 16-bit multiplication and division

• The math block also provides complex and useful
utility built upon these functions and in this context,
the Bitmap Coordinate calc function returns the
memory bank, offset, and 18-bit absolute address of
any requested pixel

See figure 7.5 of the F256 manual for more detail

original
code

new
instruction

1 a ‘frame’ is defined as a full render cycle [ball 1..n]

701/2023 - F5

Our demo (since it is color), appears more complex
because we have a fancy gradient background.
But what you are actually looking at is a full screen
bitmap image rendered with pixels whose color is
incremented every other horizontal line using a
dynamically populated, but creamy smooth color palette.
Care was taken to choose a palette that was not precisely
consecutive because doing so would have created a foggy
zone around line #128 (2/3rds down our screen) where
positive and negative colors are so close to each other,
that the rendered object is near invisible. The palette
populate routine ensures that the color is cycled every
third line instead of every line.
Also worth mentioning that we artificially populated a
handful of purple hues for the frame border, numerals,
and dark shadows behind the numerals at the beginning
and end of the palette. We don’t worry about these colors
being chosen by the XOR routine since we’ve made efforts
to start the screen gradient beginning with color #4.
Now think back to the Apple example; white objects
against a black, empty screen. Our screen on the other
hand is 100% full of pixels at all times, it’s just the colors
that are changing to give the appearance of square objects
that are bouncing. Interestingly, we did not have to add
any code to get this to work; Stephen’s original algorithm
does it all.

Final thoughts - a personal story
In the early ‘80s, the Public Library in my small town had
two computers; a well equipped Apple II, and a VIC 20
with a datasette. It also had a subscription to a British
Broadcasting Corporation show called “The Computer
Programme” which was distributed on VCR tape. After
school, my friend John and his brother Gerry and I would
watch and be amazed by the content which all seemed
very futuristic; and specifically, the Acorn BBC Micro.
Every visit ended with a few games on the Apple II. I
remember this time in my life as if it were yesterday;
(who can forget playing Choplifter with an analog
joystick). When I was accepted into AP Computer
Science in 11th grade (Pascal), my Father bought me a
Commodore 64, and I never looked back.
Nearly 40 years later, I bought my first Apple II. I’ve
since picked up adapter cards and add-ons including an
SD Card interface, an 80 column card, SuperSerial, the
Language card, not to mention an analog joystick, a set of
original paddles, manuals, and more.
By any measure, the original Apple II had a 5 year head
start on the Commodore 64 and due to this, was quickly
eclipsed by it. But not before it (and a few other home
computers), established a bustling industry of software,
hardware, and accessory vendors, some of which are still
in business today.
Many of the games that I played as a youth were
originally developed for the Apple II. In our next issue,
we will honor one of them, so stay tuned for that.

BCD, sprites, and additional bitmap window dressing
We use BCD math for tallying bank fetch stats in the
telemetry version of the code. We will not be covering it
in this article, but it will be clear to you when you see it
(in code comments). If you are new to 6502 or have not
worked with BCD, see Foenix Rising Issue #4 for a
tutorial in our ‘Intermediate Matters’ article; it explains.
Sprites are used to display text (numerals) but as a
reminder, not for any of the bouncing objects. In this
version of the project, we have a somewhat simple, but
expensive algorithm for displaying the counters.
Once instantiated, sprites offer a highly performant
method to move or locate objects on screen and only
require an update to x and y location registers or in our
case, memory pointers to a given digit.
In this version of the our program, we use 20 overlapped
32 x 32 sprites which point to a numeral or the comma
and our sprite data is 11K in size. Another choice might
have been to use standard ASCII characters but that
would cost more in terms of string processing.
In future, we will leverage even more banking for an
absolutely massive set (101K) of sprites in an effort to
reduce the update code to a small handful of lines (for
performance benefit). We will have our frame per
second (FPS) code running as well and expect the
difference to be measurable, and interesting.

[future] Interrupt use
If you are familiar with 6502 IRQs, you’ll know that on
many systems, every 1/60th of a second, the CPU stops
in its tracks and jumps to the vector identified by the
low-byte/high-byte pair stored in $FFFE/$FFFF.
IRQs are traditionally used for servicing devices such as
a keyboard or a serial port, but a developer can append a
modest amount of code and use it to our benefit. This is
an ideal way to perform pseudo time-slicing in an
architecture that otherwise does not support multitasking
or threading.
The original version of the program does not use IRQs
but as our workload becomes more complex, more of a
focus will be placed on efficiency and the goal will be to
use a handler to update the counters a few times per
second rather than hundreds of time per second. This
will provide more time for the task at hand, to smoothly
move (and ultimately, animate) objects on the screen.

About color
If you were quizzed about the original balls demo, you’d
insist that white balls are rendered against a black
background, and you would be correct; except for the
part where the XOR routine encounters pixels from two
balls in the same screen location (this occurs more
frequently than you might expect). In such cases, a
white ball is rendered in black on top of a 2nd white ball.
Stephen’s video provides a good explanation of how this
works here.

https://www.youtube.com/watch?v=YbR7X5NPicY
https://www.youtube.com/watch?v=YbR7X5NPicY
https://www.youtube.com/watch?v=WEliEAc3ZyA&t=1641s

Bank $08, which lives at $01:0000 is
updated in batched fashion as each

group of objects reach the top region of
the bitmap display.

Only a portion of the balls have enough
velocity to maintain this height, and due

to variation in bounce patterns, they
arrive in groups.

Visually, it appears as if the numerals are
incrementing as the objects make

contact; this is not far from the truth since
the numerals are 23 pixels in height

(they ‘sit’ squarely atop this bank)

Original ‘balls’ by Stephen Edwards
•

F256 Jr. port (minimum viable)

F256 Jr. port (with simple counters)

Apple II monochrome @ 280 x 192 w/ 30 balls

• Note the XOR overlap which yields the visual artifact
as explained in the linked video

• The bitmaps for the rounded edge balls are stored
within the assembly language source code

• The NBALLS constant is set to 30 balls and the main
loop iterates through the range, rendering each ball in
its new onscreen position by XOR’ing (to erase it) and
then XOR’ing again in its new position

F256 Color version (MVP) w/ 48 PONG balls

• This version leverages a gradient tinted hires
‘background’, which as discussed, is really the
foreground

• The balls more closely resemble PONG balls (they are
square) but are controlled by the same vertical velocity
algorithm but slightly less active horizontal movement,
a byproduct of the conversion to Foenix

• Despite the overhead required to manage color, the
MVP version mobilizes 48 balls with absolute ease

F256 Color version (limited telemetry) w/ 32 objects

• As above, but leverages BCD counters resulting in one
‘add with carry’ for each bank-fetch retrieval

• Shadowed numerals were built using Aseprite as 16 x
32 pixel two-color sprites. Maximum count is 99MM

• The on-screen counters are updated at each start of
cycle (once a full run of 32 PONG balls are refreshed)

• Internal counting for all 8 banks at 4 double-nibble
precision is tallied, however, only bank $08 (upper
most) and bank $0F (lowest) are displayed.

Bank $0F hosts the last 25 or 26 scan lines and is mapped to
$2000 each time a portion of a PONG ball is rendered there.

BCD addition adds 1 with each bank fetch and every ‘frame’, we
update the counters. When the program begins, counting is
staggered at first, but once the objects reach equilibrium, the

counting progresses consistently and at a furious pace.
The total count at this lowest altitude crosses 10,000 in less than
10 seconds. In reality, the count is DOUBLE this figure since the

‘+1’ bank is also retrieved (discussed on pg. 6 above).
As I sit here typing (1am), my machine just crossed 26.5 million

banks in the bottom region. This approaches more than 200
million banked pages in total and by the time I wake up, it will

cross a billion. The F256 is an amazing machine !!

801/2023 - F5

	Jan. 2023 / F5
	(FLASH!)
	Representation of the Apple II text-to-memory alignment; notice 8 bytes at the end of each 128 byte (3 screen line) block; (this is the simpler of the two challenges)
	What’s going on here?
	64,000 mapped pixels representing the 320 x 200 bitmapped screen, pieced together in 8K banks
	VICKY sees bitmapped memory as a contiguous block; registers VKY_BMO_ADDR_L, M, and H at $D101 to $D103 respectively, point to the base addr. of $01:0000
	The colors to the left are arbitrary other than red, green, and gray having the same offset/transition point. (you will see some of this in LKHI and LKLO tables as well)
	The highlighted green bank ($0D) represents a bank hypothetically mapped to $2000 (as the 65C02 sees it) but this memory is really $01:A000 - $01:BFFF
	The bottom of the screen (8th bank) is only partially full (see the light grey area at the bottom of the last red stripe. This is because the screen data is less than 64K (base 2). This area is unused. (see the thin red jagged border)
	$08
	$09
	$0A
	$0B
	$0C
	$0D
	$0E
	$0F
	fig. 4a - Foenix F256 bitmap display memory and addressing notes (revisit page 2 for relevant callouts)
	32 cycles,
	single pass
	25 cycles by count
	Iterates 8x
	Total: 204 cycles
	A few words about math block capabilities:
	The math block is a set of VICKY functions that perform high speed 16-bit multiplication and division
	The math block also provides complex and useful utility built upon these functions and in this context, the Bitmap Coordinate calc function returns the memory bank, offset, and 18-bit absolute address of any requested pixel
	See figure 7.5 of the F256 manual for more detail
	Original ‘balls’ by Stephen Edwards
	Apple II monochrome @ 280 x 192 w/ 30 balls
	Note the XOR overlap which yields the visual artifact as explained in the linked video
	The bitmaps for the rounded edge balls are stored within the assembly language source code
	The NBALLS constant is set to 30 balls and the main loop iterates through the range, rendering each ball in its new onscreen position by XOR’ing (to erase it) and then XOR’ing again in its new position
	F256 Jr. port (minimum viable)
	F256 Color version (MVP) w/ 48 PONG balls
	This version leverages a gradient tinted hires ‘background’, which as discussed, is really the foreground
	The balls more closely resemble PONG balls (they are square) but are controlled by the same vertical velocity algorithm but slightly less active horizontal movement, a byproduct of the conversion to Foenix
	Despite the overhead required to manage color, the MVP version mobilizes 48 balls with absolute ease
	F256 Jr. port (with simple counters)
	F256 Color version (limited telemetry) w/ 32 objects
	As above, but leverages BCD counters resulting in one ‘add with carry’ for each bank-fetch retrieval
	Shadowed numerals were built using Aseprite as 16 x 32 pixel two-color sprites. Maximum count is 99MM
	The on-screen counters are updated at each start of cycle (once a full run of 32 PONG balls are refreshed)
	Internal counting for all 8 banks at 4 double-nibble precision is tallied, however, only bank $08 (upper most) and bank $0F (lowest) are displayed.

