
A few of my favorite thingsMomentum 
By the time you read this, Foenix 
fans world-wide will be receiving 
their F256 Jr. systems, joined by new 
A2560K owners and maybe even an 
early ship of a first-release GEN-X.
It has been a momentous 2nd half of 
2022.

December marks my 9th month 
investing in research, writing and 
editing articles, including developing 
examples in support of Foenix Rising.
It began in the March/April time 
frame when I offered to represent 
Stefany’s endeavor at VCF East, 
which led me to this Newsletter and  
the Foenix Marketplace.
The experience has taught me a bit 
about myself, specifically, the need to 
simplify, to focus, and to know when 
‘good enough’ is good enough.  I still 
have not learned my lesson.
This year-end issue debuts a new 
column “Intermediate Matters” and 
with it, introduces the F256 Jr. from 
an assembly language coding 
perspective.
Beginning next year, we will be 
moving to a ‘flash’ format, where 
articles will be released more 
frequently, but on an individual basis.  
My hope is that a new format will 
encourage others to publish without 
the heavy lifting that goes into a 
multi-article 24 or 32 page issue.
At least that's the aim.  What will 
actually occur depends on platform 
development from users like you!
Wishing you all a peaceful and 
productive end of year.

- EMwhite

Issue #4 - rev d.

VTOC - volume table of contents

1. FLASH memory - all Foenix machines have it, but none leverage it 
the way that the Jr. does.  We’ll focus on this aspect of the 
platform in an upcoming article, but the short story is any 8K 
block of FLASH can be banked into almost any 8K segment of 
the 64K memory map.   

2. SID sockets - mine are populated with BackSIDs, but any SID will 
do.  The SID is familiar, is leveraged by piles of code and tracks, 
and brings instant joy to girls and boys around the world. 

3. The expansion possibilities offered through the 20 pin keyboard 
header, solder points CA1, CA2, CB1, CB2, the SLIP Bridge, and a 
socketed CPU for futures, are numerous. 

4. The IEC connector (not shown) provides instant SD to any kernel 
with the means, and the Commodore legacy offers primitives for 
sequential files, relative files, and more.
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This is the last 
issue that will 
focus on the 
C256 Jr. Rev A.; 
not because 
I’ve fallen out-
of-love; quite 
the opposite. 
It’s because my 
F256 Rev B. has 
arrived.  Here is 
a quick look at 
a few of the 
highlights.
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git and URL Resource Directory

Updated each issue, this space contains links to public 
Foenix related development efforts

Foenix Rising is a user-supported, not-for-profit bimonthly 
hobbyist’s newsletter published in Murray Hill, New Jersey, 
USA supporting Foenix Retro Systems products with a 
focus on software development & retro technology.

Distribution: ~210-1

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’
Correspondance:

Foenix Retro Systems Home Page
Foenix Discord Invite
Stefany Allaire Patreon Page
Stefany Allaire Twitter
Foenix Marketplace content ‘store’
VCF East 2022 Foenix Booth (virtual tour)

Links to other Foenix Resources:
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The pic above looks a lot like a rough black & white 
rendition of a Rev. A C256 Jr., but it’s not.  It’s the 
solution to the puzzle from Issue #3. 
It’s actually a picture of a piece of paper which was 
‘cut’ and ‘pasted’, (with a scissor and tape) starting as 
a marked up picture of an A2560K circuit board 
provided on pg. 17 of issue #3. 
When I was 12, I had an Uncle that resembled Uncle 
Ernie from ‘Tommy’.  He was a bad influence.  
Upon each visit, my Uncle would present me and my 
step-brother with a stack of dodgy magazines, the 
titles of which, I will not mention.  But I will mention 
that MAD magazine was included, and I fondly 
remembered the “fold-in” puzzle in the back. 
Part ‘B’ of our puzzle is a fold-in that transforms the 
A2560K circuit board into a quasi-other PCB that 
when folded in, is transformed into a Foenix Jr. 
Of course the tag-line below the picture went from 
“The machine she designed for her own use, a 
transformation that few saw coming.  Perfect fit and 
built for function; a development workstation that 
also says ‘I want to play’”… to the message you see 
above.  Congrats to those of you that solved it!

bold = newly added or updated

Lib https://github.com/daschewie/a2560k-gcc

Game https://github.com/dtremblay/c256-tetris

Utility https://github.com/dtremblay/c256-vgm-player

Game https://github.com/dtremblay/fraggy

Utility https://github.com/econtrerasd/playSong

Library https://github.com/econtrerasd/VickyGraph

Kernel https://github.com/ghackwrench/OpenKERNAL

Lang https://github.com/hth313/Calypsi-6502-Foenix

Utility https://github.com/hth313/Calypsi-Foenix-guide

Utility https://github.com/hth313/petit-fatfs-foenix-jr

Lang https://github.com/paulscottrobson/superbasic

Doc https://github.com/pweingar/C256jrManual

Utility https://github.com/pweingar/FoenixMgr

Env https://github.com/Trinity-11/FoenixIDE

Utility https://github.com/vinz6751/FoenixSamples

Env https://github.com/vinz6751/genxtos

Library https://github.com/WartyMN/F256jr-cc65-lib

Fonts https://github.com/WartyMN/Foenix-Fonts

highlighted = mentioned this issue

The Altera FPGA, cut and 
pasted from below / right

MOS 6502 and MOS 6522 
cut and pasted into 

elongated SID sockets which 
are present on the A2560K 

MOS 6502 and MOS 6522 
cut and pasted into 

elongated SID sockets which 
are present on the A2560K 

SID chips installed (in this case, 
one of each 6581 and 8580)

SID chips installed (in this case, 
one of each 6581 and 8580)
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Kernels, ‘kernals’, and the Jr. Foenix kernel(s) explained 
What’s in a name, where did they come from, and what do they want from us?

A short history of ROM based code and extensibility 
The first affordable 8-bit microprocessor-based systems 
were limited.  Product designers had to squeeze 
everything into a 32K, 48K, or at most, a 64K address 
space; they did not have access to fast or cost effective 
storage, and were therefore forced to rely on ROM chips 
for operating code.  This meant that for 99% of the home 
computers shipped, the moment the three or four screws 
were tightened, the computer's fate was sealed. 
Manufacturers such as Atari and Apple distributed 
systems incomplete, initially, relying on cartridge based 
BASIC in Atari's case, or in Apple's case, a limited 
Integer BASIC in ROM. 
It took Atari three tries to get BASIC working; Rev. ‘A' 
would lock-up if the user deleted a line of code that was 
exactly 256 bytes in length.  Upon fixing this, Atari 
introduced a fun memory leak which added 16 bytes to a 
file every time it was saved, and a new problem; if a 256 
char line was inserted in the screen editor, the same 
lockup would occur; Rev. 'C' was finally the charm. 
Apple subsequently released a disk controller that made 
the coveted peripheral affordable, but it took a full year 
and then some to get there.  This cleared the way for 
Applesoft (a vastly improved BASIC) and other 
languages.  Of the many things Apple had going for them 
in these early years, Steve Wozniak's vision1 and focus 
on extensibility was unmatched in this new industry. 
Commodore, on the other hand, shipped the majority of 
their consumer systems more or less complete (but 
certainly, not perfect).  They had a workable set of 8K 
ROMs and by the time the C64 was released, either 
could be banked in or out to allow access to the RAM 
below.  The kernal also included access primitives to 
support their 'smart' peripherals2 such as the 1541, and 
ultimately, the 1571 and 1581; the command set was 
based on the older IEEE-488 peripherals.  Commodore 
drew heavily on the early PET series investment. 

Kernel Origins 
At least as far back as the late 1970s, the word ‘kernel’ 
has been associated with the core of an operating system.  
Coined alongside early versions of Bell Labs UNIX, the 
term has since become ubiquitous in association with 
Linux, Carnegie Mellon's Mach (NeXT and MacOS), 
and various micro-kernel architectures. 
It was never 'core' as in, core memory (but on ancient 
systems, kernel-like code ran there).  Kernels are at the 
center and provide the standard method for accessing 
(and sometimes sharing) system resources.  All systems, 
regardless of OS rely on some amount of core code and 
for services to be as efficient and reliable as possible. 
On many systems, the kernel is instantiated by a boot 
loader or startup sequence and spends its life (until 
shutdown) faithfully servicing the needs of programs.  
On Foenix platforms, the kernel is pulled (or banked in) 
from flash memory and its starting address is aligned 
with the processor reset vector, services are initialized, 
and control passed to a BASIC interpreter or a command 
shell.  Everything in this legendary video (starring 
famous computer science pioneers) applies to what we 
do today.  (gotta love the size, scale, and variety of the 
vintage terminals represented; and the beards) 
Aboriginal operating systems booted from disk ‘packs' or 
paper tape via “toggled-in” instructions that loaded 
single-minded programs; the earliest of code did not rely 
on kernels per se, but a handful of exec calls to 
accomplish the most basic of tasks: put and get from 
teletype (aka ‘tty’), and write or read from storage. 
The decades that followed the 1970s witnessed the 
evolution of kernels with first names of  IRIX, Dynix, 
QNX, SCO, and dozens of others.  Moore’s law ushered 
in bigger and bigger systems, and kernels evolved further 
advancing memory paging, protection, and inter-process 
communications in shared multi-user environments. 
Why all of this background?  Because the kernels are 
coming, and because they are important.  The F256 Jr. 
platform, while cute and entertainment-focused, can also 
be used as a serious machine with its MicroKernel which 
is complete with a network stack layer. 
In the most simple sense, your relationship with one or 
more of the available Foenix kernels will improve your 
experience and productivity.  You can live without a 
kernel (as we demonstrate in the Intermediate Matters 
column) but living with one will make your life easier, 
freeing you to focus on algorithms or creative endeavors.   
Across the next two issues, we anticipate the release of a 
Fuzix port for Foenix and also, a modern new kernel 
named MicroKernel, designed and developed by Gadget 
from Discord.  Stay tuned for details in the coming 
months and have a read of the interview with Gadget on 
pg. 8 below. 

1 In addition to Wozniak’s Apple shipping full docs with 
their systems, they were also innovative by way of a 
peripheral card ROM and I/O space; the ability to boot 
via monitor from a serial port; and an inexpensive floppy 
controller based disk operating system (DOS).  The 
openness of the platform fostered a vibrant market for 
3rd party peripherals which literally paid for the rise of 
legendary vintage computer publications. 

2 Unlike Commodore’s IEEE-488 parallel drives, the 
IEC serial protocol was excruciatingly slow due to a 
MOS 6522 hardware timing flaw.  To compensate, they 
implemented bit-banging in software.  Lots more to this 
story; here is an outstanding and amusing account.

https://en.wikipedia.org/wiki/Integer_BASIC
https://en.wikipedia.org/wiki/Applesoft_BASIC
http://www.apple.com
http://www.apple.com
https://theindustriousrabbit.com/blog/2021-04-21-the-commodore-64-and-1541-the-micromanaging-bosses/
https://www.youtube.com/watch?v=JoVQTPbD6UY
https://www.fuzix.org/
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of text requires moving 4K of screen memory (and the 
color map behind it).  It's not complicated, but it costs and 
it needs to be efficient.  The kernel’s job is to provide 
utility and then to get out of the way and leave enough 
resources for 'user' programs.  Ideally, this includes a large,  
contiguous block of RAM and free cycles per screen frame 
for meaningful programs (and games) that perform well. 

F256 Jr. kernels - something old, something new, 
something borrowed, something RGB 
The Jr. borrows plenty from the Foenix lineage that 
brought us to this point.  Old?  Clearly, the interface tech, 
the fact that it will accommodate SID ICs and a 40+ year 
old peripheral standard (IEC) and RS-232 over DB9.  
But the 'new' is the exciting part.  Partly due to necessity, 
partly due to focusing on utility, the Jr. is new in the way 
that memory is dealt with, and the focus on managing 
blocks of 8K pages, all of which may be banked in from a 
generous pool of 512K of flash memory or from the 
onboard or expansion RAM. 
The architecture lays the groundwork for a multi-boot 
environment with different memory and kernel config 
options that may one day allow booting to a native 
MicroKernel or to OpenKERNAL or to a FUZIX core, or 
just a CLI from dip switches or a boot manager, user 
controlled.  Prior Foenix systems had flash, of course, but 
none were opinionated in its best use. 
Regardless, there are tenets inherited from the original 
6502 and conventions established by ‘80s and in some 
cases, ‘90s systems.  For the sake of discussion, consider 
the following memory maps, based on test builds released 
for comment across the prior several months. 

Foenix owners are fortunate to not only be able to alter 
the footprint and contents of FLASH memory, but via 
Intel Quartus, can update the FPGA image, redefining 
hardware capabilities and features as they are released. 

“You want a piece of this ?!!” 
Kernels want what most humans want, peace-of-mind, 
material possessions, and to be loved; not necessarily in 
that order. 
In a computer, this translates to consumption of just 
enough clock cycles to keep the house in order 
(negotiation with timing circuitry and peripherals), 
leveraging memory, sufficient to get the job done; and 
providing enough utility to make a programmers life 
easier.  (on resource constrained 8-bit computers, bloat 
and greed is the enemy of ‘good’) 
On 6502 systems, kernels have always appeared greedy 
in their consumption of zero page memory ($00 to $FF).  
This highly coveted block of memory is desirable due to 
the indirect indexed addressing modes which are only 
applicable here.  Zero page family opcodes are generally 
more efficient than the addressing modes that manage 
data in the other 254 pages of memory (faster by ~25%;  
page crossing is expensive and will cost a full cycle!) 
In the end, the kernel deserves this entitlement.  Think 
about traditional IRQ code that scans the keyboard, 
advances cursor flash, services buffers, and updates the 
jiffy clock 60 times per second.  Cycles add up quickly 
in this code loop; the kernel needs all the help it can get. 
Likewise, printing a single character on the screen 
requires look-up tables, decision statements, paging, and 
more.  The mundane task of scrolling even a single line 
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Initial ship brings in alpha/16 of SuperBASIC on top of 
MicroKernel 8-Dec-22.  When turned on, the user is 
greeted by a lovely new splash screen, and a fancy new 
character set.  Something like: 

Three F256 Jr. memory models to discuss 
The left side of the prior page introduces three memory 
model layouts, each of which has upper-layer user code 
(orange); that accesses hardware (blue); either through or 
without the aid of a kernel (green). 
A practical example of model #1 might be an educational 
game written in assembly language that prints text to the 
screen (using kernel calls), but also accesses sprite 
registers directly for display and manipulation. 
The SuperBASIC example (#2) depicts a BASIC 
interpreter and editing environment occupying ‘user’ 
space (orange), but also BASIC code (yellow) within it.  
It is common for integrated development environments, 
graphics or music editors, and productivity software to 
dedicate large amounts of memory to documents, songs, 
or in this case, BASIC language source. 

Four memory map examples 
The leftmost memory map (a) uses MicroKernel and 
SuperBASIC.  This is the ‘as shipped' config today.  
MicroKernel is a new and more modern architecture that 
ships with the F256 Jr.  MicroKernel provides (for the 
first time) support for legacy Commodore devices and an 
IP stack which may be attached over the DB9 wired 
serial header or via an optional SLIP bridge WiFi 
interface (sold by a 3rd party; detail forthcoming).  We 
will be discussing MicroKernel in the next issue of 
Foenix Rising but Gadget makes mention of it in the 
context of her ‘dream’ kernel/VM on the pages below. 
The next example (b) depicts a SuperBASIC build sitting 
on top of the Commodore-like “OpenKERNAL”.  This 
most closely resembles a Commodore 64 and prior PET 
machines, with lower memory shared by a kernel and 
BASIC, upper memory occupied by I/O and ROM, and 
the space between available for user programs.  This 
model is mid-build but prototypes have been released. 
The third example (c) is identical to the second, except 
without SuperBASIC.  This footprint is ideal for running 
boot-on-reset assembly language builds that kickstart 
Commodore-like code which depend on a kernel. 
The fourth example (d) on the right is a “no-kernel” 
model; this is as vanilla as it gets with only 16 bytes of 
zero page memory, 6 bytes of 6502 upper vector 
memory, and the single page (256 byte) 6502 stack 

reserved.  The Mersenne Prime discussion featured in 
Intermediate Matters is built on the no-kernel model. 

Memory Map Detail 
Each details a 64K footprint residing beneath a banked  
I/O area (four pages of I/O for managing vital system 
functions which sits atop of 8K of RAM).  This region 
exists at $C000-$DFFF. 
The F256 Jr.’s memory manager permits mixing and 
banking of the Jr.’s 512K of Flash memory, 256K (or 
optionally* the full 512K) of SRAM memory, and the 
aforementioned 8K I/O segment. 
In the OpenKERNAL examples, the kernel itself 
reserves 2 x 8K segments of memory, one of which is the 
SRAM that sits below the I/O bank and the other from 
$E000 - $FFFF.  (in the ‘no-kernel’ model, there is no 
such footprint)  
In the SuperBASIC example, orange areas are occupied 
by SuperBASIC itself (either code or housekeeping data) 
and the 24K of RAM marked in yellow represents 
memory for BASIC code which is tokenized and stored 
in a highly efficient format. 
The following represents other restrictions, caveats, and 
notes for each of the memory map examples above: 

• All four memory maps are restricted from using zero 
page addresses $00 through $0F, reserved by Foenix 
hardware for banking / DMA control. 

• No application may use the 6502 stack area for 
anything other than its intended purpose (caring for 
the return addresses of subroutine JSR / RTS and 
honoring developer push and pull actions) or else! 

• The OpenKERNAL model and to a larger extent, the 
SuperBASIC model, use a portion of (or the majority 
of) precious zero page memory.  This is quite similar 
to the way the Commodore 64 managed memory, 
leveraging locations $00 and $01 to control ROM 
and I/O banking.  Between BASIC and the 
Commodore KERNAL, nearly all of zero page 
memory on the C64 was accounted for and it doesn't 
stop there.  The original Commodore 64 BASIC V2 
used the pages of memory extending most of the way 
up to the bottom of screen memory, located from 
$0400-$07E8.  On the F256 Jr., SuperBASIC 
reserves portions of memory up through $1FFF for 
its own tables and housekeeping.  (Worth noting that 
MicroKernel is much more lean in this regard.  more 
on this in the next issue.) 

• Finally, at the top of memory exists a non-negotiable 
set of three vectors (represented in the map diagram 
by tiny blue dots the upper right corner).  These are 
little endian low byte/high byte pairs which dictate 
the address that will be stuffed into the program 
counter (PC) at CPU reset (address $FFFC / $FFFD) 
and vectors for non-maskable and IRQ interrupts.  
See this link for additional information on this topic. 
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A quick look at OpenKERNAL (a work in progress) 
Based on the lineage of Commodore ROM based 
kernels, OpenKERNAL is a clean-room version for the 
F256 Jr. platform, with support for Commodore’s IEC 
based peripherals, keyboard, joystick, and 6522 timers 
and interrupts (including support for the 20-pin CBM 
keyboard header).  And of course, it supports the Foenix 
character video generator and the PS/2 keyboard as well. 
OpenKERNEL does not support datasette tape devices.  
Most importantly, OpenKERNAL is a work in progress; 
but the aim is to be faithful to as many of the 39 original 
calls as possible.  Here is a preview of what we might 
expect and a brief introduction of how to use it: 
Call name routine called (see github source here) 
SCINIT      jmp     scinit 
IOINIT      jmp     io.ioinit 
RAMTAS      jmp     ramtas 
RESTOR      jmp     restor 
VECTOR      jmp     vector 
SETMSG      jmp     setmsg 
LSTNSA      jmp     iec.lstnsa 
TALKSA      jmp     iec.talksa 
MEMBOT      jmp     membot 
MEMTOP      jmp     memtop 
SCNKEY      jmp     scnkey 
SETTMO      jmp     iec.settmo 
IECIN       jmp     iec.iecin 
IECOUT      jmp     iec.iecout 
UNTALK      jmp     iec.untalk 
UNLSTN      jmp     iec.unlstn 
LISTEN      jmp     iec.listen 
TALK        jmp     iec.talk 
READST      jmp     iec.readst 
SETLFS      jmp     io.setlfs 
SETNAM      jmp     io.setnam 
OPEN        jmp     io.open 
CLOSE       jmp     io.close 
CHKIN       jmp     io.chkin 
CHKOUT      jmp     io.chkout 
CLRCHN      jmp     io.clrchn 
CHRIN       jmp     io.chrin 
CHROUT      jmp     io.chrout 
LOAD        jmp     iec.load 
SAVE        jmp     iec.save 
SETTIM      jmp     settim 
RDTIM       jmp     rdtim 
STOP        jmp     keyboard.stop 
GETIN       jmp     io.getin 
CLALL       jmp     io.clall 
UDTIM       jmp     udtim 
SCREEN      jmp     screen 
PLOT        jmp     plot 
IOBASE      jmp     iobase 

Example code #1 - “Hello A” (??!) 
The famous Commodore kernel example involves 
loading a PETSCII value ($41 or ‘A’) into the 
accumulator and calling CHROUT at $FFD2. 

Doing so will print a character on the screen.  This is the 
6502 equivalent of “Hello World”* by Brian Kernighan. 
LDA #$41 ;  65 decimal aka “A”

JSR $FFD2 ;  call CHROUT 

But let’s dig deeper! 

Example code #2 - “Low budget DOS wedge” 
The following 6502 code leverages kernal calls 
(highlighted in yellow to the left) for a DOS disk ‘wedge’ 
use-case.  This will work on a ‘real’ 1541 or an SD2IEC.  
For those unfamiliar with Commodore disk devices, they 
are smart devices; meaning they obey instructions 
received via formatted text strings across the secondary 
address command channel #15 as in: 
“{logical channel #}, {drive #, usually ‘8’}, 15” 
Parameter strings begin with a command (e.g. “s” or 
“scratch” to erase a file), followed by a “:” following by 
arguments.  The “duplicate” command, (only applicable 
to double drive systems) will asynchronously copy entire 
disks without host control other than to initiate the task.   
Immediately checking the error channel will not return 
control to the computer until the command completes, 
but otherwise, the computer is free to tend to other 
matters while the copy is proceeding.  See the single-
drive Commodore 1541 manual for other commands and 
reference, here.  Sequential files and Relative files are 
powerful and easy to use features that did not exist on 
traditional MFM drive units.  More on these (potentially) 
in a future Back Page article.  The legacy is interesting. 
The code below calls an INPUT subroutine (not shown), 
which in-turn calls GETIN to accept a string of up to 36 
characters then sets up and opens device 8. 

A simplified BASIC version of this code might be:
INPUT “ENTER WEDGE COMMAND”, A$ 
OPEN 15, 8, 15: PRINT #15, A$: CLOSE 15 

WEDGE LDA #36 
 JSR INPUT ; allow up to 36 chars 
 BEQ DONE ; if no input, branch

	 LDX #8 ; drive variable to open = 8 
 LDA #15 ; logical file # to open 
 TAY  ; secondary address 
 JSR SETLFS ; log file kernal call

 LDA CHCNTR ; # of chars in name

 LDX #$00 ; low byte of buffer 
 LDY #$02 ; high byte of buffer 
 JSR SETNAM ; name kernal call

 JSR OPEN ; open ‘file' 
 LDA #15 ; logical file #15 
 JSR CLOSE ; close channel 
DONE RTS
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Published publicly in the 1978 “The C Programming Language”, otherwise known as the “K&R book”, the seminal Hello 
World example has been used as a first example in every programming language for the past 40 or 50 years.  In 1972, 
while at Bell Labs, Brian Kernighan internally documented the same program for the BCPL language (predecessor to C).

*

https://archive.org/details/Commodore_1541_Disk_Drive_Users_Guide_1982-09_Commodore/page/n31/mode/2up


EMW: My understanding is that you created a 
clean room kernel for the junior based on entry 
point vectors of the Commodore 64. How 
complete is it and what is left to do?

GH: The CBM kernel is really a BIOS with a 
unified I/O system bolted on the side.  Almost 
all of the calls are implemented (minus the 
STOP call and real time clock calls).  The 
KERNAL provides two interfaces to the IEC 
bus: a BIOS level load/save interface, and an I/O 
level open/read/write/close channel interface. 

The BIOS level load is implemented; save isn't 
supported yet but it's really just waiting for the 
next FPGA release. The unified I/O interface to 
the IEC bus is not yet implemented, and I 
haven't yet pulled in the RS-232 driver.  But it’s 
all coming soon.

EMW: How large will it be in total (bytes of 
6502 binary) and what is the optimal location for 
it based on the memory management scheme of 
the Jr. 

GH: It lives in exactly the same place that the 
CBM kernel lives ($E500-$FFFF).  That's "out of 
the way" for most purposes, and as in the past, 
user programs are free to map it in and out as 
they desire. 

EMW: I read a thread suggesting that your 
TRS-80 CoCo experience figured into the 
memory management design.  Tell us about it. 

GH: I wanted an MMU design that had enough 
"windows" to efficiently implement my VM, I 
wanted something fast (8K is a good balance 
between MMU LUT size and utility), something 

A few words with ‘Gadget’ from Discord 
Foenix F256 Kernel developer talks OpenKERNAL, MicroKernel, and more

simple (instead of odd-ball windows, just divide 
the whole address space up evenly), and 
something documented (and I could provide 
chapter and verse for the CoCo 3's MMU).  I 
also wanted a minimum of two LUTs so I 
wouldn't need to reprogram the MMU table on 
every interrupt. Stef gave us four, which is 
fantastic! 

EMW: I know that you’ve been working with 
Paul Scott Robson’s SuperBASIC as well; how is 
that moving along and in the end, do you 
envision the Junior experience to be a switch on 
to BASIC welcome screen affair, similar to the 
computers we grew up with?

GH: Paul's the go-to guy for SuperBASIC, but 
yes, I believe boot-to-BASIC is still the desired 
out-of-the-box experience.

EMW: Given available resources, what 
additional feature(s) would you like to add?

GH: OpenKERNAL will most likely be limited 
to IEC devices, because the only file level calls in 
the CBM KERNAL are LOAD and SAVE. 

It may be possible to support motherboard 
FAT32 SDC devices in the future, but only for 
the LOAD and SAVE.  For more advanced uses, 
the MicroKernel offers a more conventional set 
of filesystem abstractions which can directly 
support IEC and FAT devices. 

We're planning to compile FatFS as a stand-
alone application that the kernel can run when it 
wants to talk to the SDC on the motherboard. 
It’s a full implementation, including partition 
support, but you'll need to use the MicroKernel 
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In issue #1 of Foenix Rising, we interviewed Peter Weingartner, developer of the MCP kernel for the 
A2560K and prior work on the FMX kernel, not to mention BASIC816, video tutorials and more.
This month, we interview the designer and developer of the first pair of F256 Jr. kernels.  Under the 
Discord ID ‘Gadget’, she has been collaborating with Stefany for several months, the result of which is 
OpenKERNAL (discussed above) and her masterpiece in progress, MicroKernel.
I sat down with Gadget over zoom and captured the dialog below.  Worth noting that our discussion took 
place in mid-September (3 months ago as I write this) but much of what was discussed is still relevant, so 
we will roll with it and provide updates as matters evolve.  The Rev B. prod release is shipping this week 
with an early version of MicroKernel and Paul Robson’s SuperBASIC onboard !!

* What’s in a name?  Check this link (a Disney fandom site, for a profile) 

https://disney.fandom.com/wiki/Gadget_Hackwrench


to take full advantage of it.  Here is a link: http://
elm-chan.org/fsw/ff/00index_e.html

EMW: How did you first get started and how did 
that lead to your profession? 

GH: I used an Apple II at school, then to a 16K or 
32K CoCo 1 at home and eventually, a CoCo 3 
running OS9 Level II.   

The Motorola 6809 was a CPU ahead of its time.  It 
had two stacks, was designed to run FORTH, it had 
all of these cool position independent addressing 
modes.  The guys who built it really had a dream. 

EMW: I wasn’t Bill Mensch, was it? 

GH: It was a different team at Motorola.  Most of 
the team that eventually ended up at Commodore 
came from the 6800 group, I think. 

Ultimately, the CoCo 3 came out and featured a 
reasonable graphics chip.  It wasn't great, but it was 
better.  What the Coco 3 did have was an MMU that 
supported an extended addressing range up to 512K. 

EMW: Let’s talk about life after ‘retirement’.  I’m 
using air quotes here because you don’t quite seem 
retired to me.  Considering how busy you are in 
retirement, have you ever thought about what you 
would do if you were not wrapped up with Foenix 
platforms? 

GH: Heh, if I were truly retired, I'd be focused on 
martial arts and music.  Instead, I still have this 
kernel/VM/OS dream that I want to release across 
the world's platforms : ).  

EMW: If you could focus on writing one piece of 
software for the Junior, what would it be?  

GH: I have a dream of doing a MMORPG for the 
C64 and for the Foenix machines! 

EMW: Is there any game, utility, or application 
for the early Commodores that you would like to 
port or improve upon for a Foenix platform?

GH: I wasn't a Commodore person until just a 
few years ago, when, having discovered that I 
could get my VM running in 64K on a CoCo, I 
ported it to the C64 hoping to have an audience.  
If anything, my retro-dream is still to see my VM 
fully up and running on these 64K platforms.

EMW: Given your experience, what part of tech 
would you have liked to have skipped and what 
new skills that you passed on, would you have 
liked to have learned more about?

GH: Everything ‘web’ has been a waste of time 
for me.  I would like to have spent some time in 
the 3d MMORPG game space. 

EMW: Lightning round: desert island computer?

GH: Tough!  I adore my 12" MacBook, but it's 
difficult to truly claim ownership of a SOC x86 
or ARM, so I'd like to go with a SPARC ISA 
machine: it's a lovely ISA.

EMW: Are you talking about Sun specifically?

GH: I don’t think about computer brands, I 
think about how much fun are they to code on.  
SPARC has a really pretty assembly language.  
It's similar to 68K, but it’s RISC.

EMW: Favorite instrument?

GH: I'd have to go with my Baldwin grand piano, 
though it's hard to beat the intimacy and 
portability of my favorite penny whistle!

EMW: And what is your favorite music; one 
recording or perhaps a box set that you could 
take with you to a deserted island for the 
proverbial 3-hour tour?

GH: I'd have to take the Virginia Sil'hooettes 
discography: fun, innocent music that I love to 
sing along with while I'm getting dressed in the 
morning.

EMW: Any favorite movies or books?

GH: No movies, but I'd take the Ancillary Justice 
trilogy (books) instead. They aren't at the very 
top of my favorite books list, but I think they 
would be more enjoyable to re-read. 

EMW: Favorite food (ethnicity or specialty)?

GH: Sushi, om nom nom!!! 

EMW: Ok, last one… favorite video game?

GH: Coin-op Asteroids.  Otherwise, I still love 
to lose myself in the original Guild Wars 
MMORPG on modern hardware!

EMW: Thank you Gadget!!
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http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
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It was not uncommon for ‘80s celebs to endorse computer products, or technology in general.  There are countless 
examples, some of which make little or no sense, some of which border on disturbing.  But these two were good:

Retro distraction: what do Isaac Asimov and Gadget have in common?  
Apparently, the computer below !!

As happens, late night web browsing is a bad practice.  I stumbled upon Dom DeLuise trying to sell me an NCR PC, 
the cast of M*A*S*H peddling IBM PS/2s in TV commercials, and worse.  But the worst was “the time” Magnavox 
dressed Leonard Nimoy up in white John Travolta hot pants and a ‘70s mustache.  That was it for me.

Asimov, famed Science Fiction writer, was a spokesperson for Tandy’s TRS-80 line just as Captain Kirk (William 
Shatner) served for Commodore’s paper and TV ad campaigns.  Asimov and Shatner invited us to the future, and 
Gadget, just a kid at the time, jumped on board.  
The original CoCo was accessible and affordable and with the eventual release of the CoCo 3, it was powerful; with up 
to 512K of memory, an MMU, and a software controlled clock speed doubler.  It was also capable of running a grown-
up operating system developed by a small Iowa based company, specifically for the MC6809; OS/9.  Some of what we 
are about to behold on the Jr. platform is based on Gadget's early work on this TRS-80 platform.   
In our discussion, she said that the CoCo, based on the Motorola reference design, had very 
limited graphics or sound and as a result she “lucked out”; meaning, she was compelled to 
focus on algorithms, memory management schemes and OS related disciplines.  This 
equipped her for a career designing and coding embedded systems. 
The 6809 was more advanced than the stalwart Z80 and industry darling 6502, but fell 
short of commercial success.  It was available as an add-on card on a pre-BBC Micro 
from Acorn, and within an equally niche computer, the Commodore SuperPET (as the 2nd 
processor!  Commodore would repeat this trick in the C128; neither was particularly effective). 
But the biggest 6809 use-case was unexpected.  It was commercial arcade, the most noteworthy of which included 
Williams Joust, Defender, Robotron and Konami Time Pilot and Gyruss.  It was also used in dozens of Williams Pinball 
machines. 
Will the 6809 rise from cryogenic slumber to see another day?  It’s looking that way.  Nothing certain yet, but Stefany 
is already working on an FPGA core for the Jr’s 40 pin CPU footprint.  (see the bottom of pg. 25 for a few spy photos)

6809 inside
click !!

http://chrisacorns.computinghistory.org.uk/docs/Acorn/Misc/Acorn_6809.pdf
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
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Intermediate Matters - using Binary Coded Decimal 
Another look at Dr. Marvin L. De Jong’s Prime Number Generator, ported to the Foenix F256 Jr.


subtitle: “1963 called and they want their largest known Mersenne prime number back”


Picking up from where Beginner’s Corner left off, this column is aimed at novice programmers interested 
in learning assembly language beyond simple load (LDA/peek), store (STA/poke), and branch.

With an initial focus on 6502 assembly language, we will start with Dr. De Jong’s somewhat low-budget 
code example and turn it into a big Hollywood production.  (or a character-based equivalent of that)
What we will actually do is take the original published source which was developed for the Rockwell 
AIM-65*, dissect its workings, then bolt-on some old school features.  Along the way we will discuss 
mathematics, optimization, and a handful of F256 Jr. hardware features.  Buckle up for more vintage fun.

In issue #2, we briefly discussed a 1979 COMPUTE 
magazine article written by a Physics and Mathematics 
professor named Dr. Marvin L. De Jong. 
In his original article, De Jong discussed “the advantage 
in speed that [MOS Technology 6502] machine language 
offers" versus an Apple II BASIC program in generating 
an extremely large number.  At the time of writing, the 
Mersenne prime of 211213 -1 was the 3rd or 4th largest 
known prime number; discovered in 1963 by Donald 
Gillies. 
The next Mersenne prime would not be found for 8 more 
years (1971) when an IBM 360/91 mainframe happened 
upon a prime containing twice as many digits (6,002).  
If you are not familiar with Mersenne and his ‘primes’, 
have a look at this brief 5 minute video; it explains. 
The fact that Mersenne prime numbers are rooted in 
powers of 2 make them fairly easy to calculate.  But 
notice the operative word, “calculate”.  We are not 
finding (proving) large primes with an 8-bit computer, we 
are merely generating found numbers.  And we will be 
doing so using the 6502 BCD processor feature.  We will 
also discuss the challenges when NOT using BCD. 
There is no shortage of irony attached to this subject, the 
least of which is the fact that we’ve dug up a 40+ year 
old, 2 page article to write a 6 1/2 page article.  Or that 
the CPU which De Jong based his article upon is still 
available, newly manufactured, for about $10 USD.  It is 
also peculiar that Commodore Business Machines (parent 
of MOS Technology) started as an office supply company 
selling Japanese made calculators, typewriters, and 
furniture before acquiring MOS Technology. 
Jack Tramiel’s purchase of MOS was reported as an 
attempt to protect his ability to source calculator ICs (the 
market was in the midst of collapse thanks to Texas 
Instruments entering the business).  Jack didn’t know that 
the 6502 CPU would ignite a home computer revolution, 
even though Chuck Peddle was leading him in that 
direction. 
Fun fact: As mentioned above, Donald B. Gillies 
(Princeton University PhD - 1953) was given credit for 
the discovery of 211213 -1 while teaching at the University 

of Illinois.  (he also discovered the prior two Mersenne 
primes).  His work was so highly lauded, the University 
changed their 
postmark 
(below) for 
several years: 

Why should we 
care?  As 
always, we aim to connect the dots backwards, and in this 
case, beyond the 6502 and to a subject that might appear 
difficult for an 8-bit computer to comprehend, that being: 
large number calculation.  It is an excuse to learn more about 
our collective and storied past, and our task at hand; to do 
something unexpected with a Foenix platform and leverage 
it as a learning vehicle. 

What we will be covering: 
• Overview of Dr. Marvin L. De Jong’s program, including 

a brief description of the Rockwell AIM-65 system. 
• Description of a ’like’ implementation, which was ported 

to a Commodore SX-64 via HES-MON cartridge. 
• A look at portions of: F11213JR.BIN - the first 

program published for the Foenix C256 Jr., available on 
the Foenix Marketplace; In this tutorial we will: 

• Use character display ‘as’ calc and counter memory 
• Manage the Jr.’s I/O memory banking (examples for 

all four of the ‘page 6’ features) 
• Use a redefined character set (PETSCII) on the Jr. 

(and load binary files into 64TASS) without hassle 
• Write a low budget goto x, y kernel-like function to 

print text messages to a given location, sans kernel 
• Simulate old school BBS output for fun (not profit) 
• Read the real-time clock and leverage VIA 6522 

timers from assembly language 
• Access the Jr.’s PCB mounted DIP switches - the 

aboriginal user interface (earn your pocket protector!) 
• and more (see closing thoughts on pg. 25) 

this issue
next issue

*At launch (~1977) the AIM-65 cost $345 and included a single-step 
debugging monitor; it also had a 40 char LED display, a thermal printer, 
and a full QWERTY keyboard.  Just a year or two prior, HP was selling 
the HP-67 programmable mag strip calculator for $450!

https://www.youtube.com/watch?v=XNI0Lpjjdiw
https://www.oldcalculatormuseum.com/commodore500e.html
https://cs.illinois.edu/about/awards/faculty-awards/chairs-and-professorships/donald-b-gillies-chair-computer-science


Here is the same code, keyed into a Commodore SX-64 
via the HES MON monitor cartridge.  Note the callouts 
below:  

Next steps - method and algorithm to display 261-1 
There’s a video for that, sort of.  Ben Eater spends 40+ 
minutes and writes well over 100 lines of 6502 code as 
part of his “Build a 6502 Computer” series.  In this 
tutorial, he discusses the theory of operation and writes 
code to convert a modest (16 bit) binary number for 
LCD display output.   
You can find other approaches in the pair of Lance 
Leventhal books (the original Osborne McGraw-Hill 
“6502 Assembly Language Programming” and “6502 
Assembly Language Subroutines”).  Both are out of 
print and available on archive.org. 
Now let's move on to an easier way to convert a machine 
representation of a number to base 10 output so humans 
can digest them.  This leads us to a major benefit of 
BCD and the reason why we are here. 

BCD - an easier way 
Generally speaking, hardware beats software.  History 
has proven this again and again; in the mid ‘80s, history 
was being made; recording indelible examples. 
It would be difficult to imagine the C64 without the 
VIC-II (and its sprites) or its SID chip, or the Amiga 
without its blitter functionality (within Agnus). 
The original MOS 6502 had ~3,500 transistors but the 
BCD functionality was squeezed into the arithmetic 
logic unit without noticeably affecting the size of the 
die.  Functionality was made available to programmers 
via the introduction of only two additional single byte 
opcodes, SED and CLD. (set / clear decimal mode) 
Other microprocessors (such as the M6800 and even the 
original Intel 4004) had implemented BCD but not as 
elegantly as the MOS Technology implementation.  
Hence their patent US3991307A. 

A ‘small' Mersenne example 
140 years ago, a Russian clergyman and mathematician 
named Ivan Mikheevich Pervushin discovered the 9th 
Mersenne prime (261-1) or: 2,305,843,009,213,693,951.  
I like this one because it’s ~eight 8’s and pronounceable:   
Two quintillion, three hundred and five quadrillion, 
eight hundred and forty-three trillion, nine billion, two 
hundred and thirteen million, six hundred and ninety-
three thousand, nine hundred and fifty-one (base 10). 
Something else about Mersenne primes, all bits are ‘1’.  
Think about that.  Think about the fact that as far back 
as the 15th century and in ancient times prior, 
mathematicians were discovering binary patterns before 
they knew what binary was! 
I rather like this representation of 261-1: 
1111111111111111111111111111111111111111111111111111111111111111 

Q: Why do computers love Mersenne primes? 
A: Because, you guessed it; they are “powers of 2 minus 
1”and as such, they are easily represented in binary, or 
hexadecimal.  They are also easy to generate.  Let's 
compute 261-1.  We can do it with registers, fifteen 6502 
instructions, and 8 bytes of memory. 
Note that this version of the program uses the new 
65C02 instruction bra which branches unconditionally.  
It is one byte less than the 6502 equiv (jmp).  The other 
nice thing about using this relative branch instruction is 
the code is now 100% relocatable. 
How it works: After initialization, the carry flag is set 
and bits are rotated (right to left), from the carry into the 
least significant bit of the accumulator until each byte is 
‘full’; then a whole (full) byte, indexed by the y register 
is stored; this continues until the x register counter 
matches the value on the cpx compare on the 8th line of 
this program.  When complete, the last byte of leftover 
bits is stored at position $0800. 

start lda #$00     ;initialize counters 
 ldx #$00     ;tax will save a byte

 ldy #$07     ;done after 7 full bytes 
loop sec          ;preload carry w/1 bit 
 rol a        ;rotate accum. from carry 
 bcs storbyt  ;when byte is full 
return inx 
 cpx #$3D     ;aka 61 as in 2^61 
 bne loop 
 sta $0800,y  ;store remaining bits 
end brk 
storbyt sta $0800,y  ;store whole bytes 
 dey 
 lda #$01     ;prime the accumulator 
 bra return 

at ‘start’:	 0800 00 00 00 00 00 00 00 00 
at ‘end’: 0800 1F FF FF FF FF FF FF FF   
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2566553616,777,2154, 
294,967,295

1,099, 
511,627,776

281,474, 
976,710,656

72,057,594, 
037,927,936

using the single byte 
tax opcode to transfer 

from A to X

original 6502 does 
not have a bra so 

we use JMP

Before and after 
‘m’emory listings

iPhone photo of the mighty SX-64 and its 5” display

up to:  18, 
446,744,073, 
709,551,616

https://www.youtube.com/watch?v=v3-a-zqKfgA
https://en.wikipedia.org/wiki/MOS_Technology_VIC-II
https://en.wikipedia.org/wiki/MOS_Technology_6581
https://en.wikipedia.org/wiki/Blitter#:~:text=A%20blitter%20is%20a%20circuit,data%20within%20a%20computer's%20memory.
https://en.wikipedia.org/wiki/MOS_Technology_Agnus
https://worldwide.espacenet.com/patent/search/family/024459083/publication/US3991307A?q=pn=US3991307A


12

Enter Dr. De Jong and his BCD interests 
Before the internet and before BBSes, electronics 
magazines marketed SBCs (single board computers) and 
kit computers to the technical and academic community. 
This population of pioneers was significantly smaller 
than “the masses” which would ultimately consume 
home computers by the tens of millions. 
Marvin De Jong was an educator by day but also 
published books and papers on topics such as “Chaos 
and the Simple Pendulum” and “Mathematica For 
Calculus-based Physics”.  And like many in the 
scientific community, he was a computer hobbyist as 
well, publishing a handful of books on Apple II and 
Commodore 64 Assembly Language. 
But he started with single board computers including the 
KIM-1 and the Rockwell AIM-65 and published what I 
consider the 6502 compendium entitled “Programming 
and Interfacing the 6502 With Experiments”.  It is long 
out of print but you can have a read on archive.org here. 
As discussed in Issue #2 (see pg. 32) of Foenix Rising, 
De Jong also published several COMPUTE magazine 
articles including a 4-page floating point to BCD 
conversion piece that might be worth a look. 

What does De Jong’s Prime Number program do 
Let’s start with what it does not do; It does not take any 
‘input’ whatsoever; instead, it uses hard coded ‘stop 
values’ encoded in a set of nested decision statements 
which compare (CMP) for immediate mode values of 
#$01, #$12, and #$13.  This represents the exponent of 
211213. 
While it’s processing, the original program spins quietly 
for 12 minutes or so (at 1 MHz), then fireworks!  
Actually, there are no fireworks, but there is output in 
the form of ASCII characters beginning with dozens of 
zeros (ASCII “0”), followed by the the most significant 
digits of 2,814 onwards.  3,376 digits later, it’s done and 
a BRK instruction drops control back to the monitor. 
We’ll talk about De Jong’s Rockwell AIM-65 on the next 
page or two, but suffice to say, it was a primitive 
machine with a 20 character display and a 20 character 
wide thermal (5 x 7 character matrix) printer. 
The print routine (which ultimately calls the ROM based 
kernel output routine at $F000) is 29 of the total 85 
program instructions and the initialization code is 22 
lines long; leaving a mere 34 lines to generate the prime. 
The program listing as published is heavily commented 
including symbolic labels for branch and jump targets.  
There is no memory map per se, but the 1/2 page article 
that accompanies the code does a fair job introducing the 
memory requirements and variables. 
I had a go at entering and assembling the listing with 
64TASS for the C256 Foenix Jr. Rev. A dev board and 
had a number of problems starting with the fact that the 
printed version of the source code did not differentiate 
between immediate mode and zero page addressing. 

The famous Arcade game use case 
As I was researching content for this article, I revisited 
Michael Steil’s 6502 YouTube lecture where he 
dismissed BCD as “quite boring”, assuming it was “for 
financial stuff”. 
Atari thought differently and in fact, used it for score-
keeping on the original Atari Asteroids arcade machine, 
which leveraged the original MOS 6502. 
7397: F8     SED                  ;set decimal mode 
7398: 75 52  ADC ply1ScoreTens,X  ;add to players score, tens 
739A: 95 52  STA ply1ScoreTens,X  ;  
739C: 90 12  BCC $73B0            ;increase in thous.? no, branch 
739E: B5 53  LDA ply1ScoreThous,X ;current players score, thous. 
73A0: 69 00  ADC #$00             ;add in the carry 
73A2: 95 53  STA ply1ScoreThous,X ;  
73A4: 29 0F  AND #$0F             ;will be 0 if 10,000 pts. reached 
73A6: D0 08  BNE $73B0            ;branch if not 10K for bonus ship 
73A8: A9 B0  LDA #$B0             ;len. of time to play free ship 
73AA: 85 68  STA sndTimeBonusShip ;  sound into timer

73AC: A6 18  LDX curPlayer        ;current player 
73AE: F6 57  INC ply1CurShips,X   ;award bonus ship 
73B0: D8     CLD                  ;clear decimal mode

73B1: 60     RTS                          

Fact is, as a control word actuated machine instruction, 
you can do no better than to use the MOS Technology 
implementation of BCD for real time calc and display 
use cases, games among them.  For this type of use case 
(and considering the alternative; writing 100 lines of 
assembly), this might be considered the equivalent of 
having an onboard FPU in the pre-Pentium Intel CPUs. 
An interesting footnote to this topic; I exchanged a few 
rounds of mail with Bill Mensch and he shared that due 
to the tightness of timing, Atari could not use the [then, 
new] WDC 65C02 since math operations took an 
additional cycle which threw off the Asteroids timing 
loop.  This was remedied in the 65C816 and represented 
the 3rd time that Bill redesigned the implementation. 

Another game related use case 
Here is a score keeping related tutorial that is very well 
done from Robin of “8-Bit Show And Tell”.  It is worth 
the 37 minute view (click it to open). 

Excerpt of original source from computerarcheology.com

8-Bit Show And Tell is one of my favorite retro resources.  With 
nearly 50,000 subscribers and over 5 million views, Robin 

delivers educational content, expertly edited, without fanfare
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doubled, carrying forward for every double digit BCD 
byte across 3K (or 3072 bytes) of ‘calc memory’. 
As 1 turns to 2, then to 4, and 8 and passes 10 on its way 
to 16 decimal, the value of the byte is adjusted by the 
BCD microcode.  16 hex would normally represent 22! 
But armed with the understanding that each nibble (4 
bits) of the byte can only represent values (digits) 0 
through 9, matters improve.  You will always (only) see 
decimal digits 0 through 9 and while in decimal mode, 
the CPU treats addition and subtraction as such. 
To illustrate here are several examples: 
single digit (0-9) double digit comments 
00 = 00 10 = 16  
01 = 01 11 = 17   
02 = 02 12 = 18   
03 = 03 20 = 32        0001  0000 binary 
04 = 04 28 = 40 
05 = 05 55 = 85 
06 = 06 66 = 102 
07 = 07 79 = 121 
08 = 08 80 = 128 
09 = 09 99 = 153


What to know about math in BCD mode:  There is 
actually nothing to know.  ADC (add with carry) and SBC 
(subtract with carry) simply work.  The CPU’s ALU 
performs the math, adjusting as you might expect for 
base 10.  Printing them to the screen will requires the 
use of LSR bit shifts and a logical AND. (more on this 
later) 

; hex 10 would normally be 16

   decimal but in BCD it’s still 10 
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References such as CMP $10 actually meant to identify 
an immediate compare of #$10, elsewhere, a load of $01 
as in LDA $01 actually meant zero page $01. 
Luckily, the assembly byte-code output was included in 
the left margin of the article so I was able to look up the 
opcodes and ascertain the addressing modes from there. 
An additional challenge was the source computer system 
(the Rockwell AIM-65) afforded the use of all zero page 
addresses; not so, for the Foenix; (addresses range $00 
through $0F) this range is reserved for memory banking 
and DMA, so this had to be relocated. 
A final challenge had to do with ‘me’ and my particular 
Jr. board which I damaged while inserting one of the 
power supplies that I was testing.  This resulted in a 
number of the legs of the FPGA pulling off the board 
which I ultimately fixed, but in doing so, created some 
amount of instability that manifests as component 
temperatures change.  Again, this was caused by me 
when I inadvertently flexed the board.  But it still works. 
Challenges aside, I prevailed, improving my narrow 
pitch surface mount soldering skills along the way. 

Memory use and ‘the’ calculation 
De Jong mentions allocating $0400 to $0FFF to hold 
“the number”.  After zeroing, computation begins.  The 
seed value of 1 is stored in location $0400 and is 

Doubling code (3 instructions which load, add, store); executed once for each 3072 byte iteration, 11,213 times; TABLE is 
the low-byte/high-byte page pointer ($04, $05 indirect indexed by the Y register); this starts the PAGAD inner loop

This is the test / reset portion of the outer loop 
whose job is to reset the page table pointer and 

look for the combination of low, medium, and 
high values, aka the desired exponent

Output loop

De Jong’s source code with callouts 

; highest value before carry

Inner loop - traverses each page of the 3,072 byte buffer  (can represents up to or 6,144 digits) 
Outer loop - tracked with the LO, MID, and HI counters; counts from 1 to 11,213

high nibble

‘1’ low nibble


‘0’

as dec 

values

as stored

in hex



Commodore SX-64 version of De Jong’s original code 
In this section, we’ll discuss the steps required in order 
to re-platform the original code to another 6502 system.  
De Jong’s original article mentions: “Owners of other 
systems can simply use their own output subroutine”.  
Unfortunately, it took a bit more work than just changing 
the output routine. 
In fairness, the additional work was to accommodate 
futures that De Jong would not have seen coming.  At 
the time of his writing, 6502 systems were extremely 
primitive and it was not uncommon to ‘own’ zero page 
and therefore have little to navigate around. 
Above, we touched on the need to relocate a some of the 
zero page address variables in order to accommodate the 
Foenix Jr. (reserved locations $00 through $0F).  This 
also applies to vintage Commodore platforms.  The C64 
reserves $00 for the 6510 data direction register and 
address $01 for LORAM, HIRAM, and CHAREN 
banking, not to mention some cassette control lines. 
To remedy this (at least for the SX-64 test) we used zero 
page locations of $60, $61, and $62 for LO, MID, and HI 
(originally $00, $01, and $02). 
But we were able to leave the TABLE low-byte/high-
byte indirect pointer at $04 and $05 and in fact, left the 
calc buffer at $0400 - $0FFF. 
On the SX-64, $0400 is the start of screen memory and 
continues through a small unused section, through sprite 
shape pointers, and into BASIC program memory.  We 
own this space! 
Finally, we relocated the program itself to $1808 (which 
is $1600 higher than the starting location of the original 
AIM-65 program, which started at $0208.  We do this for 
two reasons; first, it is important to get our code up and 
out of the way of [still, other] addresses required for this 
machines interrupt handler and also away from the 
screen buffer; secondly, since I entered and modified this 
code in a rudimentary ML monitor; I needed to know 
exactly which address I was changing when I made the 
last group of modifications (below), and it was easier to 
track with an offset high-byte and a matching low-byte. 
The final modifications included one JSR, two JMPs, and 
three LDA and STA absolute address references.  The 
‘absolute’ addressing mode is as it sounds; the address is 
explicit and final.  It is not subject to indexing by a 
register and regardless of the location in memory, it will 
still point to the same address.  As such, we had to 
manually patch these 3 byte instructions after the code 
was keyed in. 
Due to the amount of screen real estate that this gen 
Commodore platform offered (40 x 25 or 1,000 bytes), I 
was not interested in running the display output portion 
of the program, just the calc portion.  My aim was to a) 
get it working and b) record the run time in minutes and 
seconds which was 12 minutes and 40 seconds (close to 
De Jong’s quoted 11 minute run time for 211000.  I should 
mention that I did not disable the IRQ interrupt. 

Quick detour: Rockwell’s AIM-65 
In 1975, MOS Technology released the KIM-1 as a 
development board alongside their 6502 processor.  The 
name ‘KIM’ was catchy, but in fact, was an acronym for 
the killer feature: keyboard-input-monitor. 
Rather than rely on front panel switches (as the IMSAI 
8080 & ALTAIR 8800 did a year or so prior), the KIM-1 
boasted six 7-segment LEDs and a hexadecimal keypad 
along with a ROM based machine language monitor.  
Steve Wozniak reportedly used the KIM for his earliest 
work and published a few Dr. Dobbs Journal articles for 
the early 6502 systems, the KIM-1 among them. 
As innovative and useful as the KIM-1 was, the addition 
of a terminal was important; there was only so much one 
could accomplish keying in hex digits and interfacing 
(as a human) with a 6 digit display (though Jim 
Butterfield and others published a pile of games and 
amusements in the First Book of KIM). 
Enter Rockwell.  Not only did they 2nd source and later 
enhance the original 6502, 
but they released a vastly 
improved development 
platform, the AIM-65, and 
it had a strong following.   
(check this link for issue 
number 2 of the official 
Rockwell AIM 65 
newsletter, “Interactive”) 
Advantages over the 
KIM-1 included a 40 
character, 16 segment 
LED display, a line editor 
oriented machine 
language monitor, and a 
40 character (though 
small) thermal printer.  It also 
boasted a full ASCII keyboard and had 5 ROM sockets 
(three were free for user 
ROMs) which could host 
languages such as BASIC, 
FORTH, and Pascal. 
Of course at some point, 
cross-compilers became a 
necessity for serious 
development; but there is 
nothing like an integrated 
keyboard and apps in ROM (akin to flash in Foenix 
systems) for developing “on platform”. 

Ethan Dicks (Commodore and maker enthusiast) 
interfaced a 1541 drive to his AIM 65 !!  Have a look 

at his 6502 tribute, from VCF East 2020 (virtual).

The centre for computing history has an excellent 
collection of Rockwell AIM 65 artifacts and info 

including an index of magazine articles.
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As sold (sans case)

The AIM 65’s amazing 16-
segment LED could display 

all 64 ASCII characters
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Overview of F11213JR.BIN .  Details, lots. 
‘F’ is for Foenix and 11213 is our 1963 prime as in 
211213.  This .bin file is on the Foenix Marketplace today 
but you’ll need to insure that your system does not boot 
to kernel. 
The pic below is a PET look/feel which, for best results 
(my opinion) leverages the 2K PETSCII PET font; a 
black screen and a green (phosphor, of course) text 
foreground complete the look. (see item ‘f.’ below) 
Execution begins with the start address pushed into the 
boot vector of $FFFC (and $FFFD), and some 
housekeeping is in order.  A color palette is initialized 
and the screen is cleared with colors plugged in (more 
on this below), then the DIP switch selectable font is 
loaded into page 3, and the glorious descriptive text is 
drawn on the screen. 
Each text string is written to x and y coordinates as 
defined in the .byte definition itself.  Remember, we do 
not have a kernel here so had to write the slimmest 
version of one. 
In this application, the “byte counter” ending values are 
plugged in based on the setting of DIP switch 7. 
The ‘@‘ sign, ‘0’, and ’S’ representing high (HI), mid 
(MID), and low (LO) value variables are updated in real 
time as the calc memory proceeds. 
The upper portion of the screen is calc memory which 
begins with a $01 in location $C000 (the Foenix Jr.’s 
screen memory) versus $0400 on the AIM and 
Commodore 64 machines. 
The field of green ‘@‘ signs signifies that memory is 
initialized at zero.  If you’ve been around ASCII for a 
while, you’ll know that the ‘@‘ symbol is $40 hex (64 
decimal) which is just below the alpha range.  In VICKY 
(as with Commodore prior), 
values repeat such that writing 
a zero to screen memory 
produces an ‘@' and writing a 
1 yields an ‘A’.   
Program run has 3 distinct 
phases; a) initialization which 
was briefly described above 
and completes in a fraction of a 
second; b) calculation, which 
we will talk about shortly; and 
c) output, which displays ‘the 
number’ in the output buffer 
window which is conveniently 
256 characters in size. 
We will discuss more about 
initialization when we look at 
the actual code below, but let’s 
start with by discussing calc 
memory, herein referred to as 
“The Matrix”. (sorry) 

What’s in The Matrix? 
More than meets the eye, but not this much: 

What you are looking at is the equivalent of phosphor 
glow on a CRT or in this case, an iPhone catching a 
DVI-I display fading, more irony.  Very few of those 
characters actually exist in the wild. 
Let’s look closely at the first four characters (see 
screenshot below).  The punchline is the first 8 (least 
significant) digits are packed into 4 BCD bytes as 
17007831.  Oriented correctly (if this were the entire 
number), the answer would be 31,780,017. (not a prime) 

Clear as mud?  Remember, in De Jong’s algorithm 
above, he begins with an ‘a’ or a 01 in the first memory 
location, then doubles it.  Upon each doubling, he adds 
with carry, which spills to the next (left) nibble then to 
the byte to the right and this math is carried on without 
regard to the size of the number in memory. 
Upon each cycle of 12 pages of calculations, LO is 
incremented until it turns from 99 (BCD) to 100 and is 
carried to MID, etc.  This continues until 01 12 13. 
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'v' = 22 
or 17 hex 

aka 17 BCD  
'@' = 0 

or 00 hex 
aka 00 BCD   

'   ' = 120 
or 78 hex 

aka 78 BCD

'1' = 49 
or 31 hex 

aka 31 BCD

most significant BCD pair, however 
our calc will complete well short of 

the 12 pages (* 256 bytes)  

most significant BCD pair at this 
moment in time; calc memory 
changes constantly across ~ 2 
mins of run time @ 6.29 MHz.

least significant 
BCD pair (digits) 

The “17” identified here

15



12/2022 

Displaying the results 

At the bottom of his COMPUTE article, De Jong 
cautions: “P.S. A lot of leading zeros get printed before 
the number starts”. 
Said another way, for each unchanged ‘@’ sign, two ‘0’ 
numerals will be printed, beginning with the most 
significant potential numeral, backwards to the first non-
zero digit.  At this point, the large prime begins printing. 
In the original Rockwell example, this must have been 
annoying (I’ll have to ask Ethan). 
In our program however, we suppress this by means of 
self-modifying code (more on this next time), but this is 
the magic moment by which we print out the prime that 
our adoring public has been waiting for, so we take our 
time getting there. 
I thought it would be fun to pile vintage on top of 
vintage and leverage something akin to 1200 baud 
output.  I want the user to appreciate the number, or at 
least catch the first few digits of this truly massive 
number.   
Once the number is fully rendered (anywhere from a 
single digit of 22 -1 or 3, to 1971’s crown jewel, 219937 -1 
which is 6,002 digits long, you’ll get a special surprise 
(decade appropriate).  In the next issue, we’ll discuss 
how we did it. 
The remainder of this article will focus on code and 
coding in general.  Each of the twelve examples labeled 
(‘a’ .. ‘l’) will discuss one aspect of 6502 development, a 
new or interesting Foenix Jr. feature, or both.  Next 
issue, we will finish with the full program listing. 
Thank you to Gadget for helping me troubleshoot some 
of the issues I was having with my Jr. (after I damaged 
it), including providing the code samples that kickstarted 
this project.  Also to Dr. Marvin L. De Jong (for his 
original magazine articles, his books, and most of all, for 
his dedication to math and science education).  

a. Using display memory as variable or data storage 
It’s difficult to peer into memory and view data as it 
changes; in fact, it can be become a burden or even a full 
time job.  In modern IT, analytics is a specialty in itself; 
telemetry services, observability, logging, and log 
pattern searching requires specialized skills and tools. 
In our 8-bit world, matters are simple but viewing 
changing values across time brings unique challenges 
because facilities to log remotely (or to disk) are scarce 
and at any moment, the system is subject to locking up, 
vaporizing precious state data during debugging. 
Using display memory to store data, changes this.  
Screen memory is, after all, just plain memory; It just 
happens to be mapped into video circuit (VICKY’s) 
view.   

Considering its 320 x 240 bitmapped display, the Jr. 
might seem limited, but it boasts multiple text modes 
including a large 80 x 60 screen.  This is greater than 4x 
the size of early ‘80s machines and in this program, we 
use it for the visualizing calc memory, watching 
variables increment, and displaying the calculated 
number. 
Screen memory is mapped from $C000 to $D2BF on I/O 
page 2 and the upper left corner (coordinate 0, 0 or the 
0th column and 0th row) is the first byte of this memory 
range.  It is important to note that the byte value to font 
mapping may not produce visually useful data.  This is 
100% dependent on the font in use.  Contrary to 
traditional application development, using screen 
memory to display data requires nothing more than 
locating variables and buffers into this range; there are 
no print statements or kernel output routines. 
We will touch on fonts below, but it's worth mentioning 
that Commodore fonts are well suited for this kind of 
work since they sport a high number of printable 
characters.  (to be discussed next issue) 
In the early ‘80s, several utility program used screen 
memory and line draw characters effectively.  Here are 
two early examples: 

Ex 1. Kevin Pickell’s “Disk Doctor” utility 

Disk Doctor was unique because it allowed free text (or 
numeric value) editing within the displayed block (the 
cyan region above).  I remember following the sector 
links from the 1541 disk directory (starting on track 18, 
sector 1) into program binaries and editing text 
messages, investigating and defeating copy protection 
schemes, and learning how block allocation maps 
worked and how file types (PRG, SEQ, etc.) were 
encoded.  Disk Doctor-like tools were indispensable. 

Track and Sector editors such as “Disk Doctor” 
were popular tools-of-trade in the ‘80s.  Notice 
the 256 byte buffer in the center of the screen.


The first byte of the sector, a ‘q’ and the second, 
a ‘j’, corresponds to the link to track 17 and 

sector 10.  Using Disk Doctor, you could live-edit 
text, modify the starting address of programs, 

access hidden regions of disk.  Handy !!
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Ex 2. Michael Weitman’s “M-Term” terminal emulator 

b. Managing the Jr.’s I/O memory banking 
The modern WDC 65C02 processor used in the Jr. has 
many advantages over its MOS 6502 ancestor.  But one 
thing that has not changed is the addressing scheme.  It 
still uses 16 address lines (pins 9 - 25) and thus can only 
access 64K of memory.  Great for 1982, not for 2022. 
VICKY’s MMU to the rescue;  Through a set of zero 
page addresses, four mapping lookup tables provide a 
high performance and flexible scheme allowing 8K 
pages to bank in from SRAM, flash, and I/O. 
Today, we will discuss I/O, which on the Jr. is split 
across four 8K banks (all of which attach at $C000) as 
follows: 
I/O Bank 0 (%00000000): Devices including the stereo 
SID sockets, FPGA based PSG cores, the CODEC, 
UART (serial or SLIP port), timers, DIP switches, screen 
color lookup tables and other functions. 
I/O Bank 1 (%00000001): Font memory (the base for 
custom characters) and graphics color LUTs 
I/O Bank 2 (%00000010): Text display char memory 
I/O Bank 3 (%00000011): Text display color memory 
(index into foreground/background LUTs).   
To use: Upon write to MMU_IO_CTRL ($01), the selected 
8K bank is attached at $C000-$DFFF.  For example: 
LDA #$02 ; select "page 2" text display 
STA $01  ; store in register 

LDA #$08 ; load 'h' into accumulator 
STA $C000 ; store to screen memory 0, 0 
LDA #$09 ; load 'i' into accumulator 
STA $C001 ; store to screen memory 1, 0 

This example enables text display memory and writes 
‘hi’ in the first two positions.  We will examine a more  
full fledged printing example in detail, below. 

c. Controlling devices & resources from your own 
programs (addressing hardware directly) 
If you read the “Kernel” article on pg. 3 or if you are 
already familiar with this topic, you’ll know a kernel is 
user callable code that controls resources of a computer. 
Since we are focusing on the F256 Jr., the resources in 
question include the usual suspects: the keyboard, 
character display, and probably disk.  But on the Jr., it 
might also include the serial port or optional WiFi. 
Then there is another class of features and devices that 
begins with joysticks and gaming controllers and moves 
on through audio, graphics, and 6522 timing circuits. 
And we would be remiss if we did not mention the RTC 
(real-time clock circuit), the CODEC (D/A, converter, 
mixer), and other features and addressable components. 
Most of these devices are not kernel managed at all, but 
directly addressed at documented memory locations, 
otherwise referred to as registers. 
In the old days, I/O devices and custom chips would be 
hard-wired through TTL logic ICs to occupy an address 
range but on Foenix systems, the FPGA arbitrates 
between buses and devices (some virtual, some 
physical), solving for differences in clocking and 
negotiating streaming from serial to parallel and back. 
The following assembly language code will instruct a 
SID chip inserted in the left socket to play a simple bell 
tone*.  The highlighted lines represent registers; consult 
the F256 Jr. manual for a full map. 
PLAYBEL LDA #$00 
        TAX 
LOOP1   STA $D400,X 
        INX 
        CPX #$17 ; init most of the regs 
        BNE LOOP1 
        LDA #$32 ; ~5th octave G 
        STA $D401 ;   stuffed in freq hi byte 
        LDA #$69 
        STA $D405 ; attack / decay 
        LDA #$8A 
        STA $D406 ; sustain / release  
        LDA #$4C 
        STA $D418 ; hi-pass / volume (12) 
        LDA #$60 
        STA $D416 ; filt cutoff (high) 
        LDA #$11 
        STA $D417 ; resonance control reg 
        LDA #$11 
        STA $D404 ; triangle / gate-on (“key on”) 

        LDY #$00 ; useless delay loop... 
        LDX #$00 ;   useless because it merely 
LOOP2   INX   ;   wastes cycles, iterating  
        BNE LOOP2 ;   32 * 256 = 8192 times 
        INY 
        CPY #$20 ; at varied clock speeds 
        BNE LOOP2 ; this will no longer work 

        LDA #$10 
        STA $D404 ; “key off” 
        RTS 

This screenshot shows a Punter Protocol file 
transfer in progress.  A filename called “it” (of 

course !!) is 6 ‘good’ blocks into a transfer.

In this example, the current block is read from 
device #2 (the modem) and stored directly to 

screen memory before being committed to disk.

The mild entertainment of the visual helps distract 

from the snails-pace 300 baud transfer rate.
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pre-req: initialized CODEC, physical 6581/8580 SID or a clone 
in the left socket, and I/O bank 0 selected via MMU_IO_CTRL
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d. Character output, a how-to (and what for) guide 
In item ‘a.’ above, we discussed the benefit of using 
screen memory as variable and buffer storage to assist in 
debugging during development, for utility/functionality, 
and/or for mild entertainment purposes. 
This section, which admittedly, is a bit longer than 
originally planned, discusses the ins, outs, art, and 
history of displaying text on a screen. 
The basics of printing to screen requires two, or 
optionally, three pieces of information: 

1. What character to print? 
2. Where on the screen will the character be 

written? 
3. How do attributes need to be altered in 

coordination with writing to character memory  
(if at all). 

The “what” is obvious; in the most simplistic example, 
we are talking about a single character within the 
traditional printable alphanumeric range including 
special symbols such as ‘!’, ‘#’, and ‘$’.  Depending on 
implementation, this might also include extended 
characters between values 128 and 255.  In this range 
you are likely to find line draw characters, smily faces, 
or something obscure that somebody felt was important 
at the time. 
The “where” touches upon the concept of a logical 
‘cursor’ also known as the insertion point.  We are not 
necessarily talking about the physical cursor character 
which might appear as a thick underscore (underbar) or a 
reverse field block; these are artifacts of '70s and ‘80s 
terminals; but the same concept applies.  We are talking 
about the screen location where the next character will 
be printed. 
In older terminals, the physical/visible cursor was 
always on, whether displaying characters on the screen 
or while waiting for input; the nostalgia of watching 
characters render from left-to-right and top-to-bottom 
led by a cursor at moderate speed is heartwarming.  On 
modern machines (including Foenix), the screen is 
painted so quickly, text appears magically and of course, 
does not leverage a cursor.  Cursors are, of course, 
important for input.  We will discuss input, physical 
cursors, and something called curses in part II of this 
article.  Today, we are focusing on output and printing. 
Terminals are beginning to feel foreign to modern 
computers; but just like the IBM Mainframes that I last 
touched in my college years, they have not gone away. 
Physical CRT terminals may be gone, but there are 
several examples of how terminal and serial technology 
is still relevant.  Here are a few examples: 
In a cloud paradigm (Amazon Web Services), a virtual 
web based terminal is spawned to connect to your Linux 
EC2 or Lightsail instance.  The shell is still the sys 
admin’s home.  Yes, it is tunneled through SSL via a 
window in a Chrome browser, but the Linux instance on 

the other side thinks a physical terminal is connected, 
and the host still obeys XON / XOFF, ctrl-c, and more. 
Likewise, within a MacOS or Windows desktop, users of 
modern development environments such as Python and 
NodeJS depend on a local Terminal app and an 
ecosystem of tools that take user input from a command 
line and deliver output to a character based window with 
capabilities that mirror vintage terminals. 
Finally, the USB to Serial connection to your Foenix 
debug port is indispensable.  You use it to push .hex 
formatted code or, via specialized commands, stop the 
CPU, pull a range of memory, or update kernel flash.  
All of this occurs over a high speed serial terminal 
interface created for the earliest 6502 systems (KIM-1). 
The teletype (tty) was based on the typewriter, and 
essentially had two features (not counting the bell): 

• it could print a character and advance something 
called “the carriage” one position.  (yes, the 
carriage carried the paper) 

• It could return the carriage, or in our case, the 
logical cursor to the beginning of the line 

With this background behind use, let’s talk about the 
way that screen memory maps to the display. 

Video modes and the x / y grid: 

The F256 Jr. support 4 character based video modes for 
each of two refresh rates.  They represent an 80 x 60 
screen (or an 80 x 50 screen) and derivations as follows: 

@ 60 Hz. 80 × 60, 40 × 60, 80 × 30, 40 × 30 
@ 70 Hz. 80 × 50, 40 × 50, 80 × 25, 40 × 25 

The upper, left hand corner of the screen, regardless of 
resolution, is $C000. 
To compute the starting address of the 2nd line of text, 
the developer must sense the video mode, and from it, 
determine the width of the screen (or set it yourself, even 
if it's the default to be safe). 
The following table, borrowed from the F256 Jr. 
memory map/manual outlines the bit mapping for the 
VICKY Master Control Register. 

Forgetting about bits 3 .. 7, text mode is enabled by 
setting bit 0 of location $D000 to 1; 70 Hz. May be 
selected by setting bit 0 of location $D001 to 1; and 
either mode may be selected in double-wide (or high) by 
setting bit 1 and/or bit 2 of location $D001 to 1. 
These settings will dictate the amount of text and 
dimensions of the screen, and importantly, the “stride” of 
a line (critical for calculations but not used in our 
examples). 
We discussed stride in a graphics context in issue #2 on 
pgs. 10 and 19; have a look, as this concept will be 
important as we move on to advanced topics later. 
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The following graphic details screen locations HOME 
(0, 0), column 0 - row 1, and the last character of the 
screen assuming an 80 x 60 text mode @ 60 Hz.   

To select this screen mode (monitor withstanding), 
execute the following instructions: 

lda $01 ;load MMU_IO_CTRL 
pha ;push to stack to save state 
stz $01 ;store 0 to select I/O block 
lda #$01 ;select text mode exclusively 
sta $d000 ;store to VICKY control reg. 0 
stz $d001 ;store zero VICKY control reg. 1 
pla  ;pull value to restore state

sta $01  ;store to MMU_IO_CTRL


The following table defines starting addresses for the 
first 39* lines of the screen.   

The following string output routine on-a-budget is 
tailored for a single page application (no scrolling).  It 
relies on a static color palette, initialized along with 
screen clear by a subroutine (see ‘e.’ below). 
The only ‘feature’ is a plotting function which relies on 
the first two bytes of the text message to hold an x, y 
location where the first character should be printed.  
Some math is required (called out in comments). 
The routine will print until a null is encountered.  No 
error checking is performed; so messages longer than 
255 bytes will loop endlessly. 
This routine relies on two pairs of zero page pointers 
(from_ptr and to_ptr) and the zero page indirect y-
indexed addressing mode, but is otherwise basic. Later, 
we will enhance functionality and rewrite the ctrlcode 
and txtcolor routines for added functionality. 

1 from_ptr = $16 ;zero page 16 and 17 
2 to_ptr = $18 ;zero page 18 and 19

3 defcolor = $0200 ;variable for normal

4 pencolor = $0201 ;variable for current 
5 ldx message  ;x location (10) 
6 ldy message+1 ;y location (9) 
7 lda #<message+2 ;low byte of string 
8 sta from_ptr  
9 lda #>message+2 ;high byte of string 
10 sta from_ptr+1  
outstrng stx x_loc ;save x a variable 
12 tya ;move y to accum. 
13  asl a ;mult x 2 w shift left 
14 tay ;xfer to y for index 
15 lda scrntab+1,y ;get high byte of row 
16 sta to_ptr+1 
17 lda scrntab,y ;get low byte of row 
18 adc x_loc ;add x value 
19 sta to_ptr 
20 lda to_ptr+1 
21 adc #0 ;take care of carry… 
22 sta to_ptr+1 ;just in case 
23 stz from_offset 
24 stz to_offset 
txtloop ldy from_offset 
26 lda (from_ptr),y ;copy loop 
27 beq txtdone ;if end of line (null) 
28 cmp #$20 ;compare to “ " 
29 bcc ctrlcode ;placeholder for now  
30 ldy to_offset 
31 sta (to_ptr),y ;else store to screen

32 jsr txtcolor ;currently an rts 
33 inc to_offset 
ctrlcode inc from_offset 
35 jmp txtloop 
txtcolor 
txtdone rts 

message .text $0A,$09,"Hello, y’all",$00 

scrntab .word $CC30   .word $CFA0 
 .word $CC80   .word $CFF0 
 .word $CCD0   .word $D040 
 .word $CD20   .word $D090 
 .word $CD70   .word $D0E0 
 .word $CDC0   .word $D130 
 .word $CE10   .word $D180 
 .word $CE60   .word $D1D0 
 .word $CEB0   .word $D220 
 .word $CF00   .word $D270 
 .word $CF50 

19

$C000

$C050

$D2BF

column 0, line 1 
aka (0, 1)


$50 = 80 decimal

column 79, line 59 
aka (79, 59) 

column 0 .. 79 

row
 0 .. 59 

Screen 
row #

Starting 
address 

(hex)

Screen 
row #

Starting 
address 

(hex)

Screen 
row #

Starting 
address 

(hex)

0 $C000 13 $C410 26 $C820

1 $C050 14 $C460 27 $C870

2 $C0A0 15 $C4B0 28 $C8C0

3 $C0F0 16 $C500 29 $C910

4 $C140 17 $C550 30 $C960

5 $C190 18 $C5A0 31 $C9B0

6 $C1E0 19 $C5F0 32 $CA00

7 $C230 20 $C640 33 $CA50

8 $C280 21 $C690 34 $CAA0

9 $C2D0 22 $C6E0 35 $CAF0

10 $C320 23 $C730 36 $CB40

11 $C370 24 $C780 37 $CB90

12 $C3C0 25 $C7D0 38 $CBE0

‘home’ or (0, 0)

*for brevity, 39 rows are shown; (continued in the code on the right)
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this notation won’t 
work; (the assembler 
will bark) it’s just for 

illustrative purposes; 
the actual code will 

include the complete 
60 line table

39th row 
continues 

from here (but 
we started at 
0 so really, it’s 
the 40th-50th) 

Line 
numbers are 
for reference 

only; the 
code posted 

on the 
Foenix 
Market-
place is 

sequenced 
differently.



Regardless, let’s discuss options for invoking extended 
attributes via inline characters stream.  We’ll touch upon 
each (of 3) briefly and then move on to a specification: 
1. Use an inline non-printable control character with a 

value of less than 32 decimal.  Expressed within an 
assembly .text directive, we will use $11 for 
FLASH and $15 for NORMAL. Example follows: 

.text $0A,$09,"Please “,$12,"FLASH ME" 
 ,$15," - thank you, kindly!",$00 

(we will leverage this scheme in our not-quite-on-a-
budget algorithm on page 22) 

2. Use a sequence of codes which are escaped for 
example, “{ESC}[1M” to represent the a BOLD 
directive.  The benefit of this type of control 
sequence is ease of detection (always starting with 
ASCII 27) and also, it allows for an extensive library 
of features since it is multi-character; the downside 
is twofold: a) if you really want to ‘send’ an escape, 
you’ll need to escape it by duplicating the code (a 
minor nuisance); and  b) it requires more chars for 
the directive (4) and gets ugly in source.  This 
happens to be the Digital Equipment (DEC) 
standard, leveraged in the VT100 specification. 

3. Use a printable graphic characters which, by 
convention, can be embedded within a string.  It 
should be a character you would not normally type.  
Commodore chose this route with the PET, VIC 20, 
C64, C128, C16, and Plus/4 line of products.  By 
accident or design, it was a well architected scheme 
and it stood the test of time. 
See the Leonard Tramiel callout in the FONT 
discussion (item ‘f.’) below. 

Retro flashback ASCII 
terminals such as early 
ADDS Regent and DEC 
VT (video terminals) 
included ctrl-code 
selectable debug 
modes which, when 
invoked, output 
printable glyphs for 
ASCII values 0 .. 31; 
the chart to the right 
from a vintage terminal 
doc leveraged a font 
for this purpose.

This was useful in 
debugging encoding issues, while building Unix 
TERMCAP entries, or just for sport.

It was not uncommon for terminals to have such a 
debug mode; it was uncommon for a manufacturer to 
dedicate bit mapped ROM space for this range.  The 
ASCII backspace, bell, line feed, and carriage return, are 
among the more common single character non-
printable ASCII characters that are still relevant.


It took a while to get here, but let's talk about the ‘how’. 
How shall characters be rendered on the screen.  What 
color should they be printed with, and against what 
background?  If double-wide characters are supported, 
how do we invoke this mode?  Does a character set exist 
to allow underlined characters or reverse field?  So many 
questions … 
Few of us had the opportunity to work with the 
hardwired, impact driven terminals of the early ‘70s.  In 
the time between characters leaping off the print platen 
and into a cathode ray tube, enterprising engineers were 
thinking about how to support the conventions of the 
past while trying to innovate and navigate a future. 
ROM based character sets brought opportunity for text 
highlighting in the form of bolded, reverse field, and in 
some cases, embedded underline characters.  Solid state 
CRT terminals supported cursor movement in two or 
four directions and could seek to start-of-line, end-of-
line, top-of-form (screen), etc.  Ultimately, terminals 
supported character-based windows and overlays, scroll 
and no-scroll zones, programmable status bars and more. 
By the birth of the personal computer, this innovation 
led to a commonly accepted way to tackle these 
challenges, and it didn’t take much for the earliest 8-bit 
machines to add line draw, cursor control, and other 
capabilities.  The seemingly simple task of writing text 
to a screen was no longer a simple map/lookup, calculate 
address, and write to memory. 
Of course, the Apple I had none of this utility.  A portion 
of Steve Wozniak’s board was dedicated to “Terminal” 
functions; it included a (really) dumb terminal with three 
features: A genuine ASCII keyboard, an accompanying 
opinionated (though upper-case only) character set, and 
a hardware based Signetics character generator, which 
together was capable of printing from left to right and 
from top to bottom.  The Apple I featured a 40 x 24 line 
screen and a 5 x 7 bit font.  It also supported “auto-
scrolling”; apparently, a big deal at the time. 
Apple II’s ROM based ‘Integer’ BASIC had a VTAB 
command that could move the cursor to a given line on 
the screen, but the world would have to wait for 
Applesoft BASIC for real power; namely, commands for 
HOME (clear), HTAB, INVERSE, FLASH and 
NORMAL text directives. 

Increasing our budget… a little 
Let’s expand upon our ‘on-a-budget’ output routine 
above and consider implementing a BOLD highlighting 
capability and a FLASH feature.  I’ll mention here that 
FLASH is a bit tricky because there is no hardware 
based (or FPGA) mechanism to accomplish this; we will 
need to write this ourselves and leverage IRQ interrupts 
and an enumerated set of palette entries for it. 
BOLD is also tricky, because we are limited to 
characters which are only 8 pixels square so there is no 
feasible way to thicken or antialias a font.  This would 
be doable if we restricted ourselves to white and gray. 
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http://www.climagic.org/mirrors/VT100_Escape_Codes.html


init_pal ldx     #0 
_loop  lda     _palette,x 
  sta     TEXT_LUT_FG,x 
  sta     TEXT_LUT_BG,x 
  inx 
  cpx     #64 
  bne     _loop 
  rts 

_palette 
 .dword $000000 ;C64 black (BLK) 
 .dword $ffffff ;C64 white (WHT) 
 .dword $68372b ;C64 red (RED) 
 .dword $70a4b2 ;C64 cyan (CYN) 
 .dword $6f3d86 ;C64 purple (PUR) 
 .dword $588d43 ;C64 green (GRN) 
 .dword $352879 ;C64 blue (BLU) 
 .dword $b8c76f ;C64 yellow (YEL) 
 .dword $6f4f25 ;C64 orange (ORN) 
 .dword $433900 ;C64 brown (BRN) 
 .dword $9a6759 ;C64 pink (PNK) 
 .dword $444444 ;C64 dark gray (DK GRY) 
 .dword $6c6c6c ;C64 gray (GRY) 
 .dword $9ad284 ;C64 light green (LT GRN) 
 .dword $6c5eb5 ;C64 light blue (LT BLU) 
 .dword $959595 ;C64 light gray (LT GRY) 

About the code 
The core of the code on page 20 does not need to change 
but we will resolve two labels, currently non-functional 
stubs.  We’ve already got a trap for null (end of string) 
on line 25 and a bcc branch to ctrlcode on line 27 for 
char values less than 32.  We also have a jsr to a 
subroutine called txtcolor which takes care of color 
for printable characters (discussed below). 
From a house keeping perspective, all we need to do is 
increment the y register to keep our index moving and 
ultimately, jmp or branch back to txtloop on line 24. 
The ctrlcode routine uses a series of compare and 
branch instructions.  If the feature list was longer and 
more varied, a jump table with a linear search would be 
appropriate.  But we’ve organized our control codes in 
such a way that a cmp with #$18 and accompanying bcc 
branches to the setcolor routine where a simple index 
into the predefined palette is used.  Let’s knock off these 
routines one-by-one (starting with the most simple): 

bell jsr playbel 
40 jmp txtloop 

clrscrn jsr clear 
42 jmp txtloop 

normal lda defcolor 
44 sta pencolor 
45 jmp txtloop 

flash lda pencolor 
47 ora #$08 
48 sta pencolor 
49 jmp txtloop 

Medium budget kernel output routine specification 
Hex ASCII Feature 
$07 BEL Plays SID bell sound (see pg. 18) 
$11 DC1 CLEAR SCREEN* 
$12 DC2 FLASH on 
$13 DC3 RVS field on 
$15 NAK NORMAL (resets mode attributes) 
$18 CAN BLK text color 
$19 EM WHT text color 
$1A SUB RED text color 
$1B ESC CYN text color 
$1C FS PUR text color 
$1D GS GRN text color 
$1E RS BLU text color 
$1F US YEL text color 

This routine is deemed medium budget because it 
includes a few interesting features that you might expect 
from an output routine, but it falls short in completeness 
and has limitations since attributes are mutually 
exclusive (e.g. it is not possible to have reverse-field 
flashing; you can only have one of the two, or normal 
text.  A color an be normal or reverse field or flashing. 
This scheme includes something old and something new.  
The old is obvious, it’s the bell.  It’s a relic of days past; 
^g for the OGs.  The new is also something old, but it’s 
new again as of this week.  It is support for text colors 
represented on keycaps, recently announced for the 
F256K (see pg. 26).  Foenix systems have always had 
wide ranging color support, but key color selection is 
again front and center.   

Make color easy again; change your default color with 
a simple keystroke and poke a background color and 
border just because you can!

Text mode palettes 
The F256 Jr. supports a 16 color palette for the text 
foreground and a separate 16 color palette for the text 
background.  They need not contain the same data, but 
for our purposes, we will make the first 8 of each 
identical so we can orchestrate a true reverse field effect. 
We’ve covered this prior (in Beginner’s Corner issue #2, 
pgs. 21-25 and in issue #3 pgs. 22-23) but to quickly 
recap, each color is composed of a 24-bit value 
represented as RGB.  Including the alpha channel byte 
(currently not implemented in VICKY), each color 
requires 4 bytes.  16 colors * 4 bytes = 64 bytes or $40 
bytes hexadecimal.  Importantly, they are ordered (in 
memory) in reverse; aka (B)lue, (G)reen, (R)ed, (A)lpha. 

The foreground color LUT is located at $D400 and the 
background color LUT is located adjacent,  at $D440. 

Once established*, double nibble bytes** stored in I/O 
bank 3 (see ‘b.’ on pg. 18) correspond to characters 
stored in bank 2 on a 1:1 basis. 
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I stole 
this from 
Gadget

double-nibble as in $0C where '0' hex represents the 0th 
foreground color (BLK) and 'C' = background (GRAY)

**

… and 
these 
from 
Paul’s 
github

$D800

$D840

code to do this (top) requires I/O bank 0 selected*

We support 8 text colors; (with 
a catch and a hidden feature) 

the upper 8 are for flashing; an 
IRQ shim controls a counter 

based on the VICKY text 
cursor flash rate (see doc 

table 3.5) which changes 
the FG color to match its BG

necessity; mother of invention


https://github.com/pweingar/C256jrManual/raw/main/tex/f256jr_ref.pdf
https://github.com/pweingar/C256jrManual/raw/main/tex/f256jr_ref.pdf


ctrlcode from_offset 
66 cmp #BEL

67 beq bell 
68 cmp #CLR 
69 beq clrscrn 
70 cmp #NOR 
71 beq normal 
72 cmp #FLA 
73 beq flash

74 cmp #RVS 
75 beq reverse 
76 cmp #BLK 
77 bcc txtloop ;if < lowest (black) 
78 sec 
79 sbc #$18 
80 tax 
81 lda colors,x 
82 sta pencolor  
83 jmp txtloop 

Theory of operation 
defcolor = pencolor is written to all locations of 
color memory when the screen is cleared and pencolor 
is returned to defcolor anytime the NORMAL control 
code is embedded.  This might seem like a peculiar 
move since we are updating every character’s color 
memory every time, but we are taking this step in case 
screen memory is written to directly as explained in item 
“a.” above.  One such use case might be a text 
windowing environment. 
pencolor is what is unconditionally written to color 
memory as text is rendered on the screen; the output 
routine merely writes the character to screen memory, 
flips the I/O bank to text display color, and stores the 
current color for the corresponding character. 
When RVS field is requested, the pencolor is altered 
such that the upper and lower order nibbles (4-bits) are 
swapped.  The code to the left pushes 4 bits left-wise, 
rotating the 7th-to-carry then into the bit 0 via an ORA. 
FLASH does something we’ve addressed prior.  In issue 
#2 of beginners corner, we altered the color LUT for 
sprites by periodically changing the color of the Foenix 
Balloon beacon; here, we are managing a counter tied to 
the IRQ (every 1/60th of a second), and when at the 
FLASH ‘point’, will change the upper 8 (unusable) pen 
colors to have the same RGB as their background.  There 
are many ways to accomplish this but this was fun to 
write.  It comes a the expense of wasting 8 of our screen 
colors, however.  As mentioned, “on a budget”. 
An alternative could be to maintain list of screen start 
and stop locations to be flashed, and literally erase these 
characters and re-draw them. (this is madness). 
Another is to only permit flashing for one or two colors; 
this would limit the waste, but is restrictive. 
Let's finishing things up for now with a complete 
txtcolor routine, and code to clear the screen. 

Reverse Field - a slightly more difficult problem 
reverse lda pencolor 
51 asl a 
52 bcc rev_bit1 
53 ora #%00000001 
rev_bit1 asl a 
55 bcc rev_bit2 
56 ora #%00000001 
rev_bit2 asl a 
58 bcc rev_bit3 
59 ora #%00000001 
rev_bit3 asl a 
61 bcc rev_done 
62 ora #%00000001 
rev_done sta pencolor 
64 jmp txtloop 

This code might seem repetitive, it is.  Is it efficient?  
Good question.  Have a look at the alternative below and 
think about which is better.  As is, the above example is 
15 instructions, 33 bytes in length, and in a worst case, 
requires ~35 cycles.  It's subtle, but the worst case in this 
example is to NOT branch (all bits need to be commuted 
to the right nibble); this consumes one more cycle (the 
ora consumes 2 cycles) than a branch. 
The routine below is shorter and may appear more 
efficient, but it’s nearly twice as long in cycles; again, 
considering a worst case scenario which is unlikely and 
actually pointless*.  The routine below is 10 instructions, 
23 bytes in length, and consumes ~59 cycles.  We burn a 
number of cycles getting to and returning from the 
setbit branch (and this option is taken every time in a 
worst case scenario).  Ideally, it’s good to know the 
probability/distribution of your data when you design a 
default path.  In this case, it's actually arbitrary as it 
depends on color use.  In the end, the example above is 
preferred.  Sometimes, simpler is better. 
As a piece of code that we will only execute when 
reverse field is invoked, efficiency won't matter; but if 
code like this was embedded in an IRQ routine and 
iterating hundreds of times, variability or bloat could 
affect the stability of the system or at a minimum, 
squander resources.  We will cover IRQs next time; they 
will be instrumental in ‘animating’ the FLASH routine. 

reverse lda pencolor 
  ldx #$04 
rev_loop asl a 
  bcs setbit 
rev_incr dex 
  bne rev_loop 
rev_done sta pencolor 
  jmp txtloop 
setbit ora #%00000001 
  jmp rev_incr 

We are nearly done with the setup, decision flow, and 
method of tracking attributes.  You are probably getting 
closer to guessing how this works.  Let’s have a look at 
the main branch code and then discuss. 
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with all bits set, we are rotating $FF to be… also $FF.  
Pointless, but in this case it is not worth additional code 
that would otherwise address corner cases.

*



In the old days when screens had 960 or 1,000 
characters, a loop with indexed sta statements could 
take care of this without calisthenics.  One could merely 
use store instructions indexed on consecutive pages: 
loop  sta $c000,x  ; or $0400 on a C64, etc. 
   sta $c100,x 
   sta $c200,x 
   sta $c300,x 
   inx 
   bne loop 

This will work on a Foenix 40 x 25 screen but not on the 
ole’ C64 where we knowingly stomp on 24 bytes of 
memory that does not belong to us; sprite pointers! 
On a Commodore 64, screen RAM runs from $0400-
$07e7 and it is followed by 16 bytes which are unused, 
and then 8 bytes for sprite pointers.  This might be ok if 
we are not using sprites, but it’s sloppy.  A better method 
is to move the sta $c300,x to a small loop that will 
spin for $E7 iterations to clean up the remaining bytes. 
Here comes the fun.  On a F256 Jr., we will need nearly 
4x the number of absolute store statements (15 of them) 
to accommodate the 80 x 60 screen.  This is boring.  
Let’s use 15 lines of code to do something crazy instead. 
The following code runs a fill loop that stores full pages 
worth of the passed in accumulator values in the inner 
loop and then increments the high byte of the sta such 
that the $c0 page advances to $c1 and so on.  This outer 
loop continues until high byte = $d2 and then we clean 
up with a small loop similar to what we discussed above 
(for 192 iterations).  Finally, we ‘fix’    the high byte that 
is part of the original code before exiting. 
fill  ldx #$00    
fillloop sta $c000,x 
106   inx 
107   bne fillloop 
108   inc fillloop+2 
109   ldx fillloop+2 
110   cpx #$d2 
111   bne fillloop 
112   ldx #$c0 
smfill sta $d1ff,x 
114   dex 
115   bne smfill 
116   ldx #$c0 
117   stx fillloop+2 
118   rts 
We could have done this the “6502 way”, leveraging a 
pair of zero page addresses as we did with to_ptr 
above, but this approach is eyebrow raising and a 
somewhat advanced topic, so it's worth challenging 
ourselves to mess with memory and sleigh the one-off-
error demons in the process. 
We will take this one step further next issue when we 
modify code branching for an expendable (single-use)  
use case to improve performance in a loop that iterates a 
few thousand times.  Saved (or spent) cycles can really 
add up!  It is unlikely that anybody will ever see your 
code, but you'll know it’s there. 

Text color - managing color display memory 
Lines 28 and 29 of the code on pg. 19 determines 
whether or not the next character in the string is a 
control code character or not; if so, ctrlcode is called; 
if not, however, text display memory is updated via this 
code on line 31: 
31 sta (to_ptr),y ; store to screen


… of course we still need to update color memory!  
The beginning of the code block on lines 11-22 does all 
of the work to convert the x and y location to a memory 
address and writes the low-byte/high-byte pointer pair in 
to_ptr.  As luck would have it, color memory exists on 
a parallel plane to character memory, so we merely need 
to change the I/O bank (3 = color mem) and then change 
it back (2 = text mem) before returning.  Line 80 should 
look familiar to the line above. (it’s identical) 
Here is the complete color subroutine: 
txtcolor lda #$03 
85 sta $01 
86 lda pencolor 
87 ldy to_offset 
88 sta (to_ptr),y 
89 lda #$02 
90 sta $01 
91 rts 
Could this be made more simple?  Of course it could; we 
could smash it into the code block above and avoid the 
jsr and rts but it’s good practice to isolate routines 
that will be shared; or to avoid complexity to make code 
more readable. (our aim) 

e. Clear screen subroutine 
This routine clears the screen by writing ASCII 32 (“ “) 
to text memory and pencolor to color memory.  We do 
this in two passes and each pass uses the main loop, and 
a secondary, small loop. 
The clear portion of this routine loads the accumulator 
with the desired character value and takes care of the I/O 
bank (2 = char mem) before calling fill. 
Next, it then loads the accumulator with pencolor, 
makes it the default (defcolor), sets the I/O bank (3 = 
color mem), and again calls fill. 
There are at least 4 ways to do this (to be discussed next 
time) but this one is the most fun as you will see. 
clear  lda #$20 
93   ldx #$02 
94   stx $01 
95   jsr fill 
96   lda pencolor 
97   sta defcolor 
98   ldx #$03 
99   stx $01 
100   jsr fill 
101   ldx #$02 
102   stx $01 
103   rts 
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Inner loop - no cmp needed; 
the zero flag resets us for the 

next page  

Outer loop - bumps the high-
byte address until $d200 is 

reached

This will restore the $c0 high 
byte that we started with (for 
next time !!) .  If we don’t do 
this, we’ll create a mess just 
like C programmers that don’t 
mind their *p’s and queues.



be unacceptable.  It wasn’t the end of the world, but 
Commodore was definitely the outlier. 
Whether or not they made up for it by affording a rich 
graphic set is up for debate and argument.  One thing 
Commodore did do well was to incorporate a data entry 
and encoding methodology into the kernel, place 
symbols on keys, and (in 1980) extend the set to support 
color.  The quoted input mode, frustrating at first, was 
instrumental in putting all of those graphic symbols, 
colors, and cursor control into the hands of the masses. 

In case you wondered where the ‘   ’ came from, thank 
the 1963 ASCII standard.  In 1967 it became the caret ‘^’ 
we know today. Check out this retrospective from 
University of Turku and Aalto University in Poland, 
which lead me to this amazing online PETSCII editor. 
An outstanding resource for font data can be sourced 
from this github repo.  I stumbled upon it from this 
ATARI site.  If you are Unix savvy, a pulled .FNT from 
the github produces viewable output as follows: 

xxd -g1 -b -c1 ACADEMY.FNT | tr 0 ' ' | 
tr 1 ‘x’ (my SparcStation is gone!; this is MacOS*) 

Provided the font is 8 x 8, it will be load-ready into the 
F256 Jr. without fuss.  The following section explains. 

f. Using redefined characters (aka fonts) 
There is only so much you can do with an 8 x 8 
typeface.  Across the years, numerous examples of 8-bit 
machine character sets have been used and abused. 
In this section, we will cover three historically 
significant examples, talk about resources where you can 
nab your own fonts, and then examine code for use in 
your programs (on the F256 Jr., redefined character sets 
are easier than you might expect). 
Example 1:  Apple I and the aforementioned Signetics 
2513 character generator.  Billed as an 8 x 5, the top line 
was always blank in order to provide vertical spacing 

between characters.  On the 
left is a taste (1/2) of the set 
from the original Signetics 
documentation (linked 
above).  64 characters in 
total; nothing but upper 
case alpha + numeric + 
ASCII special symbols.  
This was the starting point. 

Example 2: Apple II (and the II+) added inverse and 
flashing in addition to a 4th repeated block of the same 
character set for no known reason (not shown). Apple 

was not ready to 
support lower 

case text yet 
(the keyboard 
wasn’t yet 
equipped for it 
either).  But 
reverse field 
and flashing 
(with 
Applesoft 

support to 
leverage the new 
video modes) was 

a step in the right direction.  The IIe delivered lower case 
for the first time for Apple, however graphics mode 
kludges and add-on cards with keyboard mods were 
popular in the II+.   
Example 3: Commodore PETSCII was designed jointly 
by Leonard Tramiel and Chuck Peddle as part of the 
integration of Microsoft BASIC, released in 1977 on the 
first Personal Electronic Transactor (PET).  In a wicked 
twist that cursed Commodore for years, they based the 
original set on the 1963 version of ASCII (which did not 
have lower case) rather than the 1967 version that 
everybody else was using.  This meant that the default 
set would have upper case in the correct sequence but in 
a mixed mode (upper/lower), Commodore opted to 
retain compatibility with their upper case (and graphic) 
only character set and swap cases such that programs 
encoded for the default upper case would default to 
lower in mixed case mode.  (The opposite would have 
had encoded text in broken graphic chars which would 
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flashing (trust m
e)

no
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lo
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s

if you grew up (or worked professionally) with Unix, you are (I am) utterly thankful that MacOS is based on MACH, 
which was derived from Carnegie Mellon’s version of Bell Labs Unix.  Thank NeXT and Steve Jobs for that one.

*

https://czasopisma.uni.lodz.pl/Replay/article/view/5930/5595
https://petscii.krissz.hu/
https://github.com/TheRobotFactory/EightBit-Atari-Fonts/tree/master/Original%20Files/FNT
https://atari8bit.net/projects/artwork/atari-fonts/
https://www.applefritter.com/files/signetics2513.pdf
https://www.applefritter.com/files/signetics2513.pdf


Editing characters within source 
One other method that you might find useful is to 
express bitmaps in binary using assembler directives.  A 
suitable tile editor would be better, but this WYSIWYG 
approach will suffice in a pinch. 
The following was pulled from the ATARI (400/800 
family) font set; the full character set is available on the 
Foenix Marketplace. 
;$3F-underline  ;$40-heart card ;$41-mid left win 
.byte %00000000 .byte %00000000 .byte %00011000 
.byte %00000000 .byte %00110110 .byte %00011000 
.byte %00000000 .byte %01111111 .byte %00011000 
.byte %00000000 .byte %01111111 .byte %00011111 
.byte %00000000 .byte %00111110 .byte %00011111 
.byte %00000000 .byte %00011100 .byte %00011000 
.byte %11111111 .byte %00001000 .byte %00011000 
.byte %00000000 .byte %00000000 .byte %00011000 

Closing thoughts for now… 
It is our hope that you find some of this entertaining, 
educational, or maybe even usable in your code. 
We will continue this discussion in the next issue with 
the following topics: 

g. keyboard input on a budget (again, sans kernel)  
h. Reading DIP switches 
i. Interpreting the real-time clock circuit 
j. Leveraging the VIA 6522 timers 
k. VIC-20 style bit-mapped graphics 
l. Reading ATARI style joysticks 

Spy photos from Foenix Labs 

The F256 Jr. supports a single character set which is 
instantiated by VICKY (and potentially altered by the 
kernel) during initialization. 
The dimension of the set is 8 (pixels wide) x 8 (pixels 
high) x 256 (characters) such that a stream of bits and 
bytes are ordered with $C000 containing the top 8 pixels 
of the first character, $C001 containing the 2nd of 8 
rows of pixels for the first character, and so on. 
The character set sits in memory (I/O block 1) between 
$C000 and  $C7FF.  To load a new set into memory, 
simply copy from anywhere into this region but be sure 
that zero page $01, the MMU_IO_CTRL, contains #$01. 
Important to take care that your alphanumeric characters 
align with the representative values else the machine 
could be rendered unusable (if typing ‘a’ places an ’s’ on 
the screen, or worse).  Note that the Foenix platform 
does not currently have an NMI bound hot key (that on 
Commodore platforms would reset the system to its 
standard ROM based character set). 
What’s on your F256?  Depending on your FPGA load 
and kernel flash, you may have the following official 
released character set (as of end of December 2022).  

This set features alphanumerics with ‘g’, ‘j’, ‘p’, ‘q’, and 
‘y’ descenders, a set of dithered fill patterns, graduated 
horizontal blocks in two styles, card suits, and other 
useful glyphs.  Unlike PETSCII, characters are ordered 
such that familiar symbols are adjacent to each other.  
Created by Foenix community member and Discord user 
Micah      , you can secure it from his github here. 

Incorporating a font file within 64TASS source 
The following assembler directive will load the 
identified file into memory as follows: 
charset .binary "petscii.bin", 0, 2048 

The following code, performs the copy, overwriting the 
default character set with characters of your choice: 

   lda #<charset 
   sta FR_PTR 
   lda #>charset 
   sta FR_PTR+1 
   lda #$C0 
   sta TO_PTR+1 
   stz TO_PTR 
   ldy #$00 
charloop lda (FR_PTR),y 
   sta (TO_PTR),y 
   iny 
   bne charloop 
   inc FR_PTR+1 
   inc TO_PTR+1 
   lda TO_PTR+1 
   cmp #$c4 
   bne charloop 
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don’t forget to set 
(and later reset) 
to I/O bank 1

 MC68040 - 3.3V A2560X CPU module

 FNX6809 - MC6809 implemented in FPGA

(a drop in replacement for the WDC65C02 for F256 Jr.)

https://github.com/WartyMN/Foenix-Fonts


What does $595 buy?  In December of 1982, the answer was the Commodore machine pictured below (left).  When 
compared to Apple, IBM, Tandy and others, the Commodore 64 was a bargain.  Not only did it boast 64K of RAM (others 
struggled to make 32K or 48K affordable), but the capabilities of the machine were class-leading in nearly every regard. 
Through the insistence of Michael Tomczyk (Commodore marketing guru) the company secured the back page of popular 
computer magazines and was relentless in product development, distribution, and advertising.  This, combined with an in-
house chip fabrication capability and Jack Tramiel’s shrewd business practices, Commodore dominated the market for 
many years.  They leveraged an already established PET dealer network at first, then sold through a growing population of 
computer stores, and ultimately, toy stores worldwide. 
Fast forward to today, and the inflation calculator suggests that $595 in 1982 dollars adjusts to $1,835 in 2022 dollars.   
For approximately 1/3rd of this inflation adjusted price, $595 in 2022 currency gains access to the natural successor to the 
C64, with vastly expanded and added capabilities. 
On December 20th, Stefany Allaire of Foenix Retro Systems announced the upcoming release of the F256K computer.   
Your $595 (USD) secures a place in line for the newly announced machine.  Created in the spirit of the C64, the F256K 
features a modern mechanical keyboard (with your choice of keyswitch type), and all of the F256 Jr. features spun into a 
slim desktop style case, complete with a cartridge/RAM expansion slot.  With a WDC 65C02 CPU running at 6.29 MHz., 
accommodations for two SID chips (BYOS*), a powerful FPGA based graphics engine with dual embedded PSG sound 
chip instances, Commodore standard IEC peripheral support, multiple text modes (up to 80 x 60), DVI-I video output, and 
much more; the combination of features and cost make it feel like Christmas 1982 all over again. 

Back Page - Vintage Advert Time Machine 
Happening now - the F256K desktop announced and on offer
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Then (1982) Now (2022)

The first round offering is available for sale for a limited time, for April 2023 shipping.  See www.c256foenix.com/
f256k for details and full specifications. 

*BYOS: bring-your-own-SID; the F256 supports +9V or +12V SIDs, not included

http://www.c256foenix.com/f256k
http://www.c256foenix.com/f256k
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