
A few of my favorite thingsMomentum
By the time you read this, Foenix
fans world-wide will be receiving
their F256 Jr. systems, joined by new
A2560K owners and maybe even an
early ship of a first-release GEN-X.
It has been a momentous 2nd half of
2022.

December marks my 9th month
investing in research, writing and
editing articles, including developing
examples in support of Foenix Rising.
It began in the March/April time
frame when I offered to represent
Stefany’s endeavor at VCF East,
which led me to this Newsletter and
the Foenix Marketplace.
The experience has taught me a bit
about myself, specifically, the need to
simplify, to focus, and to know when
‘good enough’ is good enough. I still
have not learned my lesson.
This year-end issue debuts a new
column “Intermediate Matters” and
with it, introduces the F256 Jr. from
an assembly language coding
perspective.
Beginning next year, we will be
moving to a ‘flash’ format, where
articles will be released more
frequently, but on an individual basis.
My hope is that a new format will
encourage others to publish without
the heavy lifting that goes into a
multi-article 24 or 32 page issue.
At least that's the aim. What will
actually occur depends on platform
development from users like you!
Wishing you all a peaceful and
productive end of year.

- EMwhite

Issue #4 - rev d.

VTOC - volume table of contents

1. FLASH memory - all Foenix machines have it, but none leverage it
the way that the Jr. does. We’ll focus on this aspect of the
platform in an upcoming article, but the short story is any 8K
block of FLASH can be banked into almost any 8K segment of
the 64K memory map.

2. SID sockets - mine are populated with BackSIDs, but any SID will
do. The SID is familiar, is leveraged by piles of code and tracks,
and brings instant joy to girls and boys around the world.

3. The expansion possibilities offered through the 20 pin keyboard
header, solder points CA1, CA2, CB1, CB2, the SLIP Bridge, and a
socketed CPU for futures, are numerous.

4. The IEC connector (not shown) provides instant SD to any kernel
with the means, and the Commodore legacy offers primitives for
sequential files, relative files, and more.

Resources, publisher’s notice, and ‘fold-in’ puzzle solved 2

Kernels, ‘kernals’, and the Foenix Jr’s kernel(s) explained 3 - 6

Interview: Gadget from Discord, Foenix F256 Kernel developer 7 - 8

Retro distraction: A look at the Tandy Radio Shack (TRS-80) CoCo 9

Intermediate Matters #1: Computing large numbers and select
assembly language examples to jumpstart your F256 Jr. development 10 - 25

Back Page - Vintage Advert Time Machine (Foenix F256K announced) 26

November / December 2022

This is the last
issue that will
focus on the
C256 Jr. Rev A.;
not because
I’ve fallen out-
of-love; quite
the opposite.
It’s because my
F256 Rev B. has
arrived. Here is
a quick look at
a few of the
highlights.

1 2

3

git and URL Resource Directory

Updated each issue, this space contains links to public
Foenix related development efforts

Foenix Rising is a user-supported, not-for-profit bimonthly
hobbyist’s newsletter published in Murray Hill, New Jersey,
USA supporting Foenix Retro Systems products with a
focus on software development & retro technology.

Distribution: ~210-1

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’
Correspondance:

Foenix Retro Systems Home Page
Foenix Discord Invite
Stefany Allaire Patreon Page
Stefany Allaire Twitter
Foenix Marketplace content ‘store’
VCF East 2022 Foenix Booth (virtual tour)

Links to other Foenix Resources:

212/2022

The pic above looks a lot like a rough black & white
rendition of a Rev. A C256 Jr., but it’s not. It’s the
solution to the puzzle from Issue #3.
It’s actually a picture of a piece of paper which was
‘cut’ and ‘pasted’, (with a scissor and tape) starting as
a marked up picture of an A2560K circuit board
provided on pg. 17 of issue #3.
When I was 12, I had an Uncle that resembled Uncle
Ernie from ‘Tommy’. He was a bad influence.
Upon each visit, my Uncle would present me and my
step-brother with a stack of dodgy magazines, the
titles of which, I will not mention. But I will mention
that MAD magazine was included, and I fondly
remembered the “fold-in” puzzle in the back.
Part ‘B’ of our puzzle is a fold-in that transforms the
A2560K circuit board into a quasi-other PCB that
when folded in, is transformed into a Foenix Jr.
Of course the tag-line below the picture went from
“The machine she designed for her own use, a
transformation that few saw coming. Perfect fit and
built for function; a development workstation that
also says ‘I want to play’”… to the message you see
above. Congrats to those of you that solved it!

bold = newly added or updated

Lib https://github.com/daschewie/a2560k-gcc

Game https://github.com/dtremblay/c256-tetris

Utility https://github.com/dtremblay/c256-vgm-player

Game https://github.com/dtremblay/fraggy

Utility https://github.com/econtrerasd/playSong

Library https://github.com/econtrerasd/VickyGraph

Kernel https://github.com/ghackwrench/OpenKERNAL

Lang https://github.com/hth313/Calypsi-6502-Foenix

Utility https://github.com/hth313/Calypsi-Foenix-guide

Utility https://github.com/hth313/petit-fatfs-foenix-jr

Lang https://github.com/paulscottrobson/superbasic

Doc https://github.com/pweingar/C256jrManual

Utility https://github.com/pweingar/FoenixMgr

Env https://github.com/Trinity-11/FoenixIDE

Utility https://github.com/vinz6751/FoenixSamples

Env https://github.com/vinz6751/genxtos

Library https://github.com/WartyMN/F256jr-cc65-lib

Fonts https://github.com/WartyMN/Foenix-Fonts

highlighted = mentioned this issue

The Altera FPGA, cut and
pasted from below / right

MOS 6502 and MOS 6522
cut and pasted into

elongated SID sockets which
are present on the A2560K

MOS 6502 and MOS 6522
cut and pasted into

elongated SID sockets which
are present on the A2560K

SID chips installed (in this case,
one of each 6581 and 8580)

SID chips installed (in this case,
one of each 6581 and 8580)

http://c256foenix.com
https://discord.gg/gzEQSKagN5
https://www.patreon.com/bePatron?u=56480700&redirect_uri=https://c256foenix.com/?v=b174a31115af&utm_medium=widget
https://twitter.com/StefanyAllaire/status/1560776205716008961
http://apps.emwhite.org/foenixmarketplace/
http://vcf.emwhite.org/map/
https://github.com/daschewie/a2560k-gcc
https://github.com/dtremblay/c256-tetris
https://github.com/dtremblay/c256-vgm-player
https://github.com/dtremblay/fraggy
https://github.com/econtrerasd/playSong
https://github.com/econtrerasd/VickyGraph
https://github.com/ghackwrench/OpenKERNAL
https://github.com/hth313/Calypsi-6502-Foenix
https://github.com/hth313/Calypsi-Foenix-guide
https://github.com/hth313/petit-fatfs-foenix-jr
https://github.com/paulscottrobson/superbasic
https://github.com/pweingar/C256jrManual
https://github.com/pweingar/FoenixMgr
https://github.com/Trinity-11/FoenixIDE
https://github.com/vinz6751/FoenixSamples
https://github.com/vinz6751/genxtos
https://github.com/WartyMN/F256jr-cc65-lib
https://github.com/WartyMN/Foenix-Fonts

312/2022

Kernels, ‘kernals’, and the Jr. Foenix kernel(s) explained
What’s in a name, where did they come from, and what do they want from us?

A short history of ROM based code and extensibility
The first affordable 8-bit microprocessor-based systems
were limited. Product designers had to squeeze
everything into a 32K, 48K, or at most, a 64K address
space; they did not have access to fast or cost effective
storage, and were therefore forced to rely on ROM chips
for operating code. This meant that for 99% of the home
computers shipped, the moment the three or four screws
were tightened, the computer's fate was sealed.
Manufacturers such as Atari and Apple distributed
systems incomplete, initially, relying on cartridge based
BASIC in Atari's case, or in Apple's case, a limited
Integer BASIC in ROM.
It took Atari three tries to get BASIC working; Rev. ‘A'
would lock-up if the user deleted a line of code that was
exactly 256 bytes in length. Upon fixing this, Atari
introduced a fun memory leak which added 16 bytes to a
file every time it was saved, and a new problem; if a 256
char line was inserted in the screen editor, the same
lockup would occur; Rev. 'C' was finally the charm.
Apple subsequently released a disk controller that made
the coveted peripheral affordable, but it took a full year
and then some to get there. This cleared the way for
Applesoft (a vastly improved BASIC) and other
languages. Of the many things Apple had going for them
in these early years, Steve Wozniak's vision1 and focus
on extensibility was unmatched in this new industry.
Commodore, on the other hand, shipped the majority of
their consumer systems more or less complete (but
certainly, not perfect). They had a workable set of 8K
ROMs and by the time the C64 was released, either
could be banked in or out to allow access to the RAM
below. The kernal also included access primitives to
support their 'smart' peripherals2 such as the 1541, and
ultimately, the 1571 and 1581; the command set was
based on the older IEEE-488 peripherals. Commodore
drew heavily on the early PET series investment.

Kernel Origins
At least as far back as the late 1970s, the word ‘kernel’
has been associated with the core of an operating system.
Coined alongside early versions of Bell Labs UNIX, the
term has since become ubiquitous in association with
Linux, Carnegie Mellon's Mach (NeXT and MacOS),
and various micro-kernel architectures.
It was never 'core' as in, core memory (but on ancient
systems, kernel-like code ran there). Kernels are at the
center and provide the standard method for accessing
(and sometimes sharing) system resources. All systems,
regardless of OS rely on some amount of core code and
for services to be as efficient and reliable as possible.
On many systems, the kernel is instantiated by a boot
loader or startup sequence and spends its life (until
shutdown) faithfully servicing the needs of programs.
On Foenix platforms, the kernel is pulled (or banked in)
from flash memory and its starting address is aligned
with the processor reset vector, services are initialized,
and control passed to a BASIC interpreter or a command
shell. Everything in this legendary video (starring
famous computer science pioneers) applies to what we
do today. (gotta love the size, scale, and variety of the
vintage terminals represented; and the beards)
Aboriginal operating systems booted from disk ‘packs' or
paper tape via “toggled-in” instructions that loaded
single-minded programs; the earliest of code did not rely
on kernels per se, but a handful of exec calls to
accomplish the most basic of tasks: put and get from
teletype (aka ‘tty’), and write or read from storage.
The decades that followed the 1970s witnessed the
evolution of kernels with first names of IRIX, Dynix,
QNX, SCO, and dozens of others. Moore’s law ushered
in bigger and bigger systems, and kernels evolved further
advancing memory paging, protection, and inter-process
communications in shared multi-user environments.
Why all of this background? Because the kernels are
coming, and because they are important. The F256 Jr.
platform, while cute and entertainment-focused, can also
be used as a serious machine with its MicroKernel which
is complete with a network stack layer.
In the most simple sense, your relationship with one or
more of the available Foenix kernels will improve your
experience and productivity. You can live without a
kernel (as we demonstrate in the Intermediate Matters
column) but living with one will make your life easier,
freeing you to focus on algorithms or creative endeavors.
Across the next two issues, we anticipate the release of a
Fuzix port for Foenix and also, a modern new kernel
named MicroKernel, designed and developed by Gadget
from Discord. Stay tuned for details in the coming
months and have a read of the interview with Gadget on
pg. 8 below.

1 In addition to Wozniak’s Apple shipping full docs with
their systems, they were also innovative by way of a
peripheral card ROM and I/O space; the ability to boot
via monitor from a serial port; and an inexpensive floppy
controller based disk operating system (DOS). The
openness of the platform fostered a vibrant market for
3rd party peripherals which literally paid for the rise of
legendary vintage computer publications.

2 Unlike Commodore’s IEEE-488 parallel drives, the
IEC serial protocol was excruciatingly slow due to a
MOS 6522 hardware timing flaw. To compensate, they
implemented bit-banging in software. Lots more to this
story; here is an outstanding and amusing account.

https://en.wikipedia.org/wiki/Integer_BASIC
https://en.wikipedia.org/wiki/Applesoft_BASIC
http://www.apple.com
http://www.apple.com
https://theindustriousrabbit.com/blog/2021-04-21-the-commodore-64-and-1541-the-micromanaging-bosses/
https://www.youtube.com/watch?v=JoVQTPbD6UY
https://www.fuzix.org/

block addr.
& usability

m
od

el
 #

1:

M
ic

ro
Ke

rn
el

(o
r O

pe
nK

ER
N

AL
)

w
ith

 a
 C

LI

OpenKERNAL
w/ SuperBASIC

412/2022

tiny region of zero
page reserved by

hardware (for MMU
use $00-$0f)*

hardware

user code

hardware

user code

I/O pages
($c000-$dfff)

Three models

mostly usable
($e000-$ffff)

I/O

m
od

el
 #

0:

no
-k

er
ne

l

us
ab

le
 m

em
or

y
fo

ot
pr

in
t ~

63
.4

K
**

6502 stack
($0100-$01FF)

usable
($2000-$3fff)

usable
($4000-$5fff)

usable
($6000-$7fff)

usable
($8000-$9fff)

usable
($a000-$bfff)

* while SuperBASIC occupies a 16K footprint, its codebase

 is larger and dynamically extends into additional blocks of flash memory

** may be virtually extended via flash or extended SRAM banking

partially usable
~($0200-$1fff)

IRQ/BRK,
Reset, and
NMI vectors
$fffe/$ffff
$fffc/$fffd
$fffa/$fffb

kernel

m
od

el
 #

2:

M
ic

ro
Ke

rn
el

 (o
r O

pe
nK

ER
N

AL
)

w
ith

 S
up

er
BA

SI
C

hardware

kernel

SuperBASIC
(including BASIC user code)

most of the zero
page address space

used between
OpenKERNAL and

SuperBASIC

‘no-kernel’
/

of text requires moving 4K of screen memory (and the
color map behind it). It's not complicated, but it costs and
it needs to be efficient. The kernel’s job is to provide
utility and then to get out of the way and leave enough
resources for 'user' programs. Ideally, this includes a large,
contiguous block of RAM and free cycles per screen frame
for meaningful programs (and games) that perform well.

F256 Jr. kernels - something old, something new,
something borrowed, something RGB
The Jr. borrows plenty from the Foenix lineage that
brought us to this point. Old? Clearly, the interface tech,
the fact that it will accommodate SID ICs and a 40+ year
old peripheral standard (IEC) and RS-232 over DB9.
But the 'new' is the exciting part. Partly due to necessity,
partly due to focusing on utility, the Jr. is new in the way
that memory is dealt with, and the focus on managing
blocks of 8K pages, all of which may be banked in from a
generous pool of 512K of flash memory or from the
onboard or expansion RAM.
The architecture lays the groundwork for a multi-boot
environment with different memory and kernel config
options that may one day allow booting to a native
MicroKernel or to OpenKERNAL or to a FUZIX core, or
just a CLI from dip switches or a boot manager, user
controlled. Prior Foenix systems had flash, of course, but
none were opinionated in its best use.
Regardless, there are tenets inherited from the original
6502 and conventions established by ‘80s and in some
cases, ‘90s systems. For the sake of discussion, consider
the following memory maps, based on test builds released
for comment across the prior several months.

Foenix owners are fortunate to not only be able to alter
the footprint and contents of FLASH memory, but via
Intel Quartus, can update the FPGA image, redefining
hardware capabilities and features as they are released.

“You want a piece of this ?!!”
Kernels want what most humans want, peace-of-mind,
material possessions, and to be loved; not necessarily in
that order.
In a computer, this translates to consumption of just
enough clock cycles to keep the house in order
(negotiation with timing circuitry and peripherals),
leveraging memory, sufficient to get the job done; and
providing enough utility to make a programmers life
easier. (on resource constrained 8-bit computers, bloat
and greed is the enemy of ‘good’)
On 6502 systems, kernels have always appeared greedy
in their consumption of zero page memory ($00 to $FF).
This highly coveted block of memory is desirable due to
the indirect indexed addressing modes which are only
applicable here. Zero page family opcodes are generally
more efficient than the addressing modes that manage
data in the other 254 pages of memory (faster by ~25%;
page crossing is expensive and will cost a full cycle!)
In the end, the kernel deserves this entitlement. Think
about traditional IRQ code that scans the keyboard,
advances cursor flash, services buffers, and updates the
jiffy clock 60 times per second. Cycles add up quickly
in this code loop; the kernel needs all the help it can get.
Likewise, printing a single character on the screen
requires look-up tables, decision statements, paging, and
more. The mundane task of scrolling even a single line

I/O

BASIC
user

program

(~24K)

SuperBASIC

code*

(16K)

Four memory map examples

(b) (d)

I/O

BASIC
user

program

(~24K)

SuperBASIC

code*

(16K)

(a)

(as shipped)

MicroKernel w/

SuperBASIC

16 bytes at the top of
zero page used by

MicroKernel + some
amount of zero page

addr. used by
SuperBASIC

I/O

smattering of
reserved zero

page addresses
used by

OpenKERNAL

(c)

OpenKERNAL
(no exec or CLI)

us
ab

le
 m

em
or

y
fo

ot
pr

in
t ~

47
.5

K
**

1

2

3

1

2

3

all but the NMI, RESET, IRQ/BRK vectors (6 bytes)

mapped memory beneath I/O blocks is usable (but often
used by kernel implementations)

regardless of kernel (or in the case of memory maps a. and b. above,
SuperBASIC), the 6502 stack and 16 bytes of zero page memory is reserved

5

Initial ship brings in alpha/16 of SuperBASIC on top of
MicroKernel 8-Dec-22. When turned on, the user is
greeted by a lovely new splash screen, and a fancy new
character set. Something like:

Three F256 Jr. memory models to discuss
The left side of the prior page introduces three memory
model layouts, each of which has upper-layer user code
(orange); that accesses hardware (blue); either through or
without the aid of a kernel (green).
A practical example of model #1 might be an educational
game written in assembly language that prints text to the
screen (using kernel calls), but also accesses sprite
registers directly for display and manipulation.
The SuperBASIC example (#2) depicts a BASIC
interpreter and editing environment occupying ‘user’
space (orange), but also BASIC code (yellow) within it.
It is common for integrated development environments,
graphics or music editors, and productivity software to
dedicate large amounts of memory to documents, songs,
or in this case, BASIC language source.

Four memory map examples
The leftmost memory map (a) uses MicroKernel and
SuperBASIC. This is the ‘as shipped' config today.
MicroKernel is a new and more modern architecture that
ships with the F256 Jr. MicroKernel provides (for the
first time) support for legacy Commodore devices and an
IP stack which may be attached over the DB9 wired
serial header or via an optional SLIP bridge WiFi
interface (sold by a 3rd party; detail forthcoming). We
will be discussing MicroKernel in the next issue of
Foenix Rising but Gadget makes mention of it in the
context of her ‘dream’ kernel/VM on the pages below.
The next example (b) depicts a SuperBASIC build sitting
on top of the Commodore-like “OpenKERNAL”. This
most closely resembles a Commodore 64 and prior PET
machines, with lower memory shared by a kernel and
BASIC, upper memory occupied by I/O and ROM, and
the space between available for user programs. This
model is mid-build but prototypes have been released.
The third example (c) is identical to the second, except
without SuperBASIC. This footprint is ideal for running
boot-on-reset assembly language builds that kickstart
Commodore-like code which depend on a kernel.
The fourth example (d) on the right is a “no-kernel”
model; this is as vanilla as it gets with only 16 bytes of
zero page memory, 6 bytes of 6502 upper vector
memory, and the single page (256 byte) 6502 stack

reserved. The Mersenne Prime discussion featured in
Intermediate Matters is built on the no-kernel model.

Memory Map Detail
Each details a 64K footprint residing beneath a banked
I/O area (four pages of I/O for managing vital system
functions which sits atop of 8K of RAM). This region
exists at $C000-$DFFF.
The F256 Jr.’s memory manager permits mixing and
banking of the Jr.’s 512K of Flash memory, 256K (or
optionally* the full 512K) of SRAM memory, and the
aforementioned 8K I/O segment.
In the OpenKERNAL examples, the kernel itself
reserves 2 x 8K segments of memory, one of which is the
SRAM that sits below the I/O bank and the other from
$E000 - $FFFF. (in the ‘no-kernel’ model, there is no
such footprint)
In the SuperBASIC example, orange areas are occupied
by SuperBASIC itself (either code or housekeeping data)
and the 24K of RAM marked in yellow represents
memory for BASIC code which is tokenized and stored
in a highly efficient format.
The following represents other restrictions, caveats, and
notes for each of the memory map examples above:

• All four memory maps are restricted from using zero
page addresses $00 through $0F, reserved by Foenix
hardware for banking / DMA control.

• No application may use the 6502 stack area for
anything other than its intended purpose (caring for
the return addresses of subroutine JSR / RTS and
honoring developer push and pull actions) or else!

• The OpenKERNAL model and to a larger extent, the
SuperBASIC model, use a portion of (or the majority
of) precious zero page memory. This is quite similar
to the way the Commodore 64 managed memory,
leveraging locations $00 and $01 to control ROM
and I/O banking. Between BASIC and the
Commodore KERNAL, nearly all of zero page
memory on the C64 was accounted for and it doesn't
stop there. The original Commodore 64 BASIC V2
used the pages of memory extending most of the way
up to the bottom of screen memory, located from
$0400-$07E8. On the F256 Jr., SuperBASIC
reserves portions of memory up through $1FFF for
its own tables and housekeeping. (Worth noting that
MicroKernel is much more lean in this regard. more
on this in the next issue.)

• Finally, at the top of memory exists a non-negotiable
set of three vectors (represented in the map diagram
by tiny blue dots the upper right corner). These are
little endian low byte/high byte pairs which dictate
the address that will be stuffed into the program
counter (PC) at CPU reset (address $FFFC / $FFFD)
and vectors for non-maskable and IRQ interrupts.
See this link for additional information on this topic.

12/2022

https://www.pagetable.com/?p=410

6

A quick look at OpenKERNAL (a work in progress)
Based on the lineage of Commodore ROM based
kernels, OpenKERNAL is a clean-room version for the
F256 Jr. platform, with support for Commodore’s IEC
based peripherals, keyboard, joystick, and 6522 timers
and interrupts (including support for the 20-pin CBM
keyboard header). And of course, it supports the Foenix
character video generator and the PS/2 keyboard as well.
OpenKERNEL does not support datasette tape devices.
Most importantly, OpenKERNAL is a work in progress;
but the aim is to be faithful to as many of the 39 original
calls as possible. Here is a preview of what we might
expect and a brief introduction of how to use it:
Call name routine called (see github source here)
SCINIT jmp scinit
IOINIT jmp io.ioinit
RAMTAS jmp ramtas
RESTOR jmp restor
VECTOR jmp vector
SETMSG jmp setmsg
LSTNSA jmp iec.lstnsa
TALKSA jmp iec.talksa
MEMBOT jmp membot
MEMTOP jmp memtop
SCNKEY jmp scnkey
SETTMO jmp iec.settmo
IECIN jmp iec.iecin
IECOUT jmp iec.iecout
UNTALK jmp iec.untalk
UNLSTN jmp iec.unlstn
LISTEN jmp iec.listen
TALK jmp iec.talk
READST jmp iec.readst
SETLFS jmp io.setlfs
SETNAM jmp io.setnam
OPEN jmp io.open
CLOSE jmp io.close
CHKIN jmp io.chkin
CHKOUT jmp io.chkout
CLRCHN jmp io.clrchn
CHRIN jmp io.chrin
CHROUT jmp io.chrout
LOAD jmp iec.load
SAVE jmp iec.save
SETTIM jmp settim
RDTIM jmp rdtim
STOP jmp keyboard.stop
GETIN jmp io.getin
CLALL jmp io.clall
UDTIM jmp udtim
SCREEN jmp screen
PLOT jmp plot
IOBASE jmp iobase

Example code #1 - “Hello A” (??!)
The famous Commodore kernel example involves
loading a PETSCII value ($41 or ‘A’) into the
accumulator and calling CHROUT at $FFD2.

Doing so will print a character on the screen. This is the
6502 equivalent of “Hello World”* by Brian Kernighan.
LDA #$41 ; 65 decimal aka “A”

JSR $FFD2 ; call CHROUT

But let’s dig deeper!

Example code #2 - “Low budget DOS wedge”
The following 6502 code leverages kernal calls
(highlighted in yellow to the left) for a DOS disk ‘wedge’
use-case. This will work on a ‘real’ 1541 or an SD2IEC.
For those unfamiliar with Commodore disk devices, they
are smart devices; meaning they obey instructions
received via formatted text strings across the secondary
address command channel #15 as in:
“{logical channel #}, {drive #, usually ‘8’}, 15”
Parameter strings begin with a command (e.g. “s” or
“scratch” to erase a file), followed by a “:” following by
arguments. The “duplicate” command, (only applicable
to double drive systems) will asynchronously copy entire
disks without host control other than to initiate the task.
Immediately checking the error channel will not return
control to the computer until the command completes,
but otherwise, the computer is free to tend to other
matters while the copy is proceeding. See the single-
drive Commodore 1541 manual for other commands and
reference, here. Sequential files and Relative files are
powerful and easy to use features that did not exist on
traditional MFM drive units. More on these (potentially)
in a future Back Page article. The legacy is interesting.
The code below calls an INPUT subroutine (not shown),
which in-turn calls GETIN to accept a string of up to 36
characters then sets up and opens device 8.

A simplified BASIC version of this code might be:
INPUT “ENTER WEDGE COMMAND”, A$
OPEN 15, 8, 15: PRINT #15, A$: CLOSE 15

WEDGE LDA #36
 JSR INPUT ; allow up to 36 chars
 BEQ DONE ; if no input, branch

	 LDX #8 ; drive variable to open = 8
 LDA #15 ; logical file # to open
 TAY ; secondary address
 JSR SETLFS ; log file kernal call

 LDA CHCNTR ; # of chars in name

 LDX #$00 ; low byte of buffer
 LDY #$02 ; high byte of buffer
 JSR SETNAM ; name kernal call

 JSR OPEN ; open ‘file'
 LDA #15 ; logical file #15
 JSR CLOSE ; close channel
DONE RTS

12/2022

Published publicly in the 1978 “The C Programming Language”, otherwise known as the “K&R book”, the seminal Hello
World example has been used as a first example in every programming language for the past 40 or 50 years. In 1972,
while at Bell Labs, Brian Kernighan internally documented the same program for the BCPL language (predecessor to C).

*

https://archive.org/details/Commodore_1541_Disk_Drive_Users_Guide_1982-09_Commodore/page/n31/mode/2up

EMW: My understanding is that you created a
clean room kernel for the junior based on entry
point vectors of the Commodore 64. How
complete is it and what is left to do?

GH: The CBM kernel is really a BIOS with a
unified I/O system bolted on the side. Almost
all of the calls are implemented (minus the
STOP call and real time clock calls). The
KERNAL provides two interfaces to the IEC
bus: a BIOS level load/save interface, and an I/O
level open/read/write/close channel interface.

The BIOS level load is implemented; save isn't
supported yet but it's really just waiting for the
next FPGA release. The unified I/O interface to
the IEC bus is not yet implemented, and I
haven't yet pulled in the RS-232 driver. But it’s
all coming soon.

EMW: How large will it be in total (bytes of
6502 binary) and what is the optimal location for
it based on the memory management scheme of
the Jr.

GH: It lives in exactly the same place that the
CBM kernel lives ($E500-$FFFF). That's "out of
the way" for most purposes, and as in the past,
user programs are free to map it in and out as
they desire.

EMW: I read a thread suggesting that your
TRS-80 CoCo experience figured into the
memory management design. Tell us about it.

GH: I wanted an MMU design that had enough
"windows" to efficiently implement my VM, I
wanted something fast (8K is a good balance
between MMU LUT size and utility), something

A few words with ‘Gadget’ from Discord
Foenix F256 Kernel developer talks OpenKERNAL, MicroKernel, and more

simple (instead of odd-ball windows, just divide
the whole address space up evenly), and
something documented (and I could provide
chapter and verse for the CoCo 3's MMU). I
also wanted a minimum of two LUTs so I
wouldn't need to reprogram the MMU table on
every interrupt. Stef gave us four, which is
fantastic!

EMW: I know that you’ve been working with
Paul Scott Robson’s SuperBASIC as well; how is
that moving along and in the end, do you
envision the Junior experience to be a switch on
to BASIC welcome screen affair, similar to the
computers we grew up with?

GH: Paul's the go-to guy for SuperBASIC, but
yes, I believe boot-to-BASIC is still the desired
out-of-the-box experience.

EMW: Given available resources, what
additional feature(s) would you like to add?

GH: OpenKERNAL will most likely be limited
to IEC devices, because the only file level calls in
the CBM KERNAL are LOAD and SAVE.

It may be possible to support motherboard
FAT32 SDC devices in the future, but only for
the LOAD and SAVE. For more advanced uses,
the MicroKernel offers a more conventional set
of filesystem abstractions which can directly
support IEC and FAT devices.

We're planning to compile FatFS as a stand-
alone application that the kernel can run when it
wants to talk to the SDC on the motherboard.
It’s a full implementation, including partition
support, but you'll need to use the MicroKernel

712/2022

In issue #1 of Foenix Rising, we interviewed Peter Weingartner, developer of the MCP kernel for the
A2560K and prior work on the FMX kernel, not to mention BASIC816, video tutorials and more.
This month, we interview the designer and developer of the first pair of F256 Jr. kernels. Under the
Discord ID ‘Gadget’, she has been collaborating with Stefany for several months, the result of which is
OpenKERNAL (discussed above) and her masterpiece in progress, MicroKernel.
I sat down with Gadget over zoom and captured the dialog below. Worth noting that our discussion took
place in mid-September (3 months ago as I write this) but much of what was discussed is still relevant, so
we will roll with it and provide updates as matters evolve. The Rev B. prod release is shipping this week
with an early version of MicroKernel and Paul Robson’s SuperBASIC onboard !!

* What’s in a name? Check this link (a Disney fandom site, for a profile)

https://disney.fandom.com/wiki/Gadget_Hackwrench

to take full advantage of it. Here is a link: http://
elm-chan.org/fsw/ff/00index_e.html

EMW: How did you first get started and how did
that lead to your profession?

GH: I used an Apple II at school, then to a 16K or
32K CoCo 1 at home and eventually, a CoCo 3
running OS9 Level II.

The Motorola 6809 was a CPU ahead of its time. It
had two stacks, was designed to run FORTH, it had
all of these cool position independent addressing
modes. The guys who built it really had a dream.

EMW: I wasn’t Bill Mensch, was it?

GH: It was a different team at Motorola. Most of
the team that eventually ended up at Commodore
came from the 6800 group, I think.

Ultimately, the CoCo 3 came out and featured a
reasonable graphics chip. It wasn't great, but it was
better. What the Coco 3 did have was an MMU that
supported an extended addressing range up to 512K.

EMW: Let’s talk about life after ‘retirement’. I’m
using air quotes here because you don’t quite seem
retired to me. Considering how busy you are in
retirement, have you ever thought about what you
would do if you were not wrapped up with Foenix
platforms?

GH: Heh, if I were truly retired, I'd be focused on
martial arts and music. Instead, I still have this
kernel/VM/OS dream that I want to release across
the world's platforms :).

EMW: If you could focus on writing one piece of
software for the Junior, what would it be?

GH: I have a dream of doing a MMORPG for the
C64 and for the Foenix machines!

EMW: Is there any game, utility, or application
for the early Commodores that you would like to
port or improve upon for a Foenix platform?

GH: I wasn't a Commodore person until just a
few years ago, when, having discovered that I
could get my VM running in 64K on a CoCo, I
ported it to the C64 hoping to have an audience.
If anything, my retro-dream is still to see my VM
fully up and running on these 64K platforms.

EMW: Given your experience, what part of tech
would you have liked to have skipped and what
new skills that you passed on, would you have
liked to have learned more about?

GH: Everything ‘web’ has been a waste of time
for me. I would like to have spent some time in
the 3d MMORPG game space.

EMW: Lightning round: desert island computer?

GH: Tough! I adore my 12" MacBook, but it's
difficult to truly claim ownership of a SOC x86
or ARM, so I'd like to go with a SPARC ISA
machine: it's a lovely ISA.

EMW: Are you talking about Sun specifically?

GH: I don’t think about computer brands, I
think about how much fun are they to code on.
SPARC has a really pretty assembly language.
It's similar to 68K, but it’s RISC.

EMW: Favorite instrument?

GH: I'd have to go with my Baldwin grand piano,
though it's hard to beat the intimacy and
portability of my favorite penny whistle!

EMW: And what is your favorite music; one
recording or perhaps a box set that you could
take with you to a deserted island for the
proverbial 3-hour tour?

GH: I'd have to take the Virginia Sil'hooettes
discography: fun, innocent music that I love to
sing along with while I'm getting dressed in the
morning.

EMW: Any favorite movies or books?

GH: No movies, but I'd take the Ancillary Justice
trilogy (books) instead. They aren't at the very
top of my favorite books list, but I think they
would be more enjoyable to re-read.

EMW: Favorite food (ethnicity or specialty)?

GH: Sushi, om nom nom!!!

EMW: Ok, last one… favorite video game?

GH: Coin-op Asteroids. Otherwise, I still love
to lose myself in the original Guild Wars
MMORPG on modern hardware!

EMW: Thank you Gadget!!

812/2022

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html

912/2022

It was not uncommon for ‘80s celebs to endorse computer products, or technology in general. There are countless
examples, some of which make little or no sense, some of which border on disturbing. But these two were good:

Retro distraction: what do Isaac Asimov and Gadget have in common?
Apparently, the computer below !!

As happens, late night web browsing is a bad practice. I stumbled upon Dom DeLuise trying to sell me an NCR PC,
the cast of M*A*S*H peddling IBM PS/2s in TV commercials, and worse. But the worst was “the time” Magnavox
dressed Leonard Nimoy up in white John Travolta hot pants and a ‘70s mustache. That was it for me.

Asimov, famed Science Fiction writer, was a spokesperson for Tandy’s TRS-80 line just as Captain Kirk (William
Shatner) served for Commodore’s paper and TV ad campaigns. Asimov and Shatner invited us to the future, and
Gadget, just a kid at the time, jumped on board.
The original CoCo was accessible and affordable and with the eventual release of the CoCo 3, it was powerful; with up
to 512K of memory, an MMU, and a software controlled clock speed doubler. It was also capable of running a grown-
up operating system developed by a small Iowa based company, specifically for the MC6809; OS/9. Some of what we
are about to behold on the Jr. platform is based on Gadget's early work on this TRS-80 platform.
In our discussion, she said that the CoCo, based on the Motorola reference design, had very
limited graphics or sound and as a result she “lucked out”; meaning, she was compelled to
focus on algorithms, memory management schemes and OS related disciplines. This
equipped her for a career designing and coding embedded systems.
The 6809 was more advanced than the stalwart Z80 and industry darling 6502, but fell
short of commercial success. It was available as an add-on card on a pre-BBC Micro
from Acorn, and within an equally niche computer, the Commodore SuperPET (as the 2nd
processor! Commodore would repeat this trick in the C128; neither was particularly effective).
But the biggest 6809 use-case was unexpected. It was commercial arcade, the most noteworthy of which included
Williams Joust, Defender, Robotron and Konami Time Pilot and Gyruss. It was also used in dozens of Williams Pinball
machines.
Will the 6809 rise from cryogenic slumber to see another day? It’s looking that way. Nothing certain yet, but Stefany
is already working on an FPGA core for the Jr’s 40 pin CPU footprint. (see the bottom of pg. 25 for a few spy photos)

6809 inside
click !!

http://chrisacorns.computinghistory.org.uk/docs/Acorn/Misc/Acorn_6809.pdf
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739
https://dl.acm.org/doi/pdf/10.1145/1500676.1500739

1012/2022

Intermediate Matters - using Binary Coded Decimal
Another look at Dr. Marvin L. De Jong’s Prime Number Generator, ported to the Foenix F256 Jr.

subtitle: “1963 called and they want their largest known Mersenne prime number back”

Picking up from where Beginner’s Corner left off, this column is aimed at novice programmers interested
in learning assembly language beyond simple load (LDA/peek), store (STA/poke), and branch.

With an initial focus on 6502 assembly language, we will start with Dr. De Jong’s somewhat low-budget
code example and turn it into a big Hollywood production. (or a character-based equivalent of that)
What we will actually do is take the original published source which was developed for the Rockwell
AIM-65*, dissect its workings, then bolt-on some old school features. Along the way we will discuss
mathematics, optimization, and a handful of F256 Jr. hardware features. Buckle up for more vintage fun.

In issue #2, we briefly discussed a 1979 COMPUTE
magazine article written by a Physics and Mathematics
professor named Dr. Marvin L. De Jong.
In his original article, De Jong discussed “the advantage
in speed that [MOS Technology 6502] machine language
offers" versus an Apple II BASIC program in generating
an extremely large number. At the time of writing, the
Mersenne prime of 211213 -1 was the 3rd or 4th largest
known prime number; discovered in 1963 by Donald
Gillies.
The next Mersenne prime would not be found for 8 more
years (1971) when an IBM 360/91 mainframe happened
upon a prime containing twice as many digits (6,002).
If you are not familiar with Mersenne and his ‘primes’,
have a look at this brief 5 minute video; it explains.
The fact that Mersenne prime numbers are rooted in
powers of 2 make them fairly easy to calculate. But
notice the operative word, “calculate”. We are not
finding (proving) large primes with an 8-bit computer, we
are merely generating found numbers. And we will be
doing so using the 6502 BCD processor feature. We will
also discuss the challenges when NOT using BCD.
There is no shortage of irony attached to this subject, the
least of which is the fact that we’ve dug up a 40+ year
old, 2 page article to write a 6 1/2 page article. Or that
the CPU which De Jong based his article upon is still
available, newly manufactured, for about $10 USD. It is
also peculiar that Commodore Business Machines (parent
of MOS Technology) started as an office supply company
selling Japanese made calculators, typewriters, and
furniture before acquiring MOS Technology.
Jack Tramiel’s purchase of MOS was reported as an
attempt to protect his ability to source calculator ICs (the
market was in the midst of collapse thanks to Texas
Instruments entering the business). Jack didn’t know that
the 6502 CPU would ignite a home computer revolution,
even though Chuck Peddle was leading him in that
direction.
Fun fact: As mentioned above, Donald B. Gillies
(Princeton University PhD - 1953) was given credit for
the discovery of 211213 -1 while teaching at the University

of Illinois. (he also discovered the prior two Mersenne
primes). His work was so highly lauded, the University
changed their
postmark
(below) for
several years:

Why should we
care? As
always, we aim to connect the dots backwards, and in this
case, beyond the 6502 and to a subject that might appear
difficult for an 8-bit computer to comprehend, that being:
large number calculation. It is an excuse to learn more about
our collective and storied past, and our task at hand; to do
something unexpected with a Foenix platform and leverage
it as a learning vehicle.

What we will be covering:
• Overview of Dr. Marvin L. De Jong’s program, including

a brief description of the Rockwell AIM-65 system.
• Description of a ’like’ implementation, which was ported

to a Commodore SX-64 via HES-MON cartridge.
• A look at portions of: F11213JR.BIN - the first

program published for the Foenix C256 Jr., available on
the Foenix Marketplace; In this tutorial we will:

• Use character display ‘as’ calc and counter memory
• Manage the Jr.’s I/O memory banking (examples for

all four of the ‘page 6’ features)
• Use a redefined character set (PETSCII) on the Jr.

(and load binary files into 64TASS) without hassle
• Write a low budget goto x, y kernel-like function to

print text messages to a given location, sans kernel
• Simulate old school BBS output for fun (not profit)
• Read the real-time clock and leverage VIA 6522

timers from assembly language
• Access the Jr.’s PCB mounted DIP switches - the

aboriginal user interface (earn your pocket protector!)
• and more (see closing thoughts on pg. 25)

this issue
next issue

*At launch (~1977) the AIM-65 cost $345 and included a single-step
debugging monitor; it also had a 40 char LED display, a thermal printer,
and a full QWERTY keyboard. Just a year or two prior, HP was selling
the HP-67 programmable mag strip calculator for $450!

https://www.youtube.com/watch?v=XNI0Lpjjdiw
https://www.oldcalculatormuseum.com/commodore500e.html
https://cs.illinois.edu/about/awards/faculty-awards/chairs-and-professorships/donald-b-gillies-chair-computer-science

Here is the same code, keyed into a Commodore SX-64
via the HES MON monitor cartridge. Note the callouts
below:

Next steps - method and algorithm to display 261-1
There’s a video for that, sort of. Ben Eater spends 40+
minutes and writes well over 100 lines of 6502 code as
part of his “Build a 6502 Computer” series. In this
tutorial, he discusses the theory of operation and writes
code to convert a modest (16 bit) binary number for
LCD display output.
You can find other approaches in the pair of Lance
Leventhal books (the original Osborne McGraw-Hill
“6502 Assembly Language Programming” and “6502
Assembly Language Subroutines”). Both are out of
print and available on archive.org.
Now let's move on to an easier way to convert a machine
representation of a number to base 10 output so humans
can digest them. This leads us to a major benefit of
BCD and the reason why we are here.

BCD - an easier way
Generally speaking, hardware beats software. History
has proven this again and again; in the mid ‘80s, history
was being made; recording indelible examples.
It would be difficult to imagine the C64 without the
VIC-II (and its sprites) or its SID chip, or the Amiga
without its blitter functionality (within Agnus).
The original MOS 6502 had ~3,500 transistors but the
BCD functionality was squeezed into the arithmetic
logic unit without noticeably affecting the size of the
die. Functionality was made available to programmers
via the introduction of only two additional single byte
opcodes, SED and CLD. (set / clear decimal mode)
Other microprocessors (such as the M6800 and even the
original Intel 4004) had implemented BCD but not as
elegantly as the MOS Technology implementation.
Hence their patent US3991307A.

A ‘small' Mersenne example
140 years ago, a Russian clergyman and mathematician
named Ivan Mikheevich Pervushin discovered the 9th
Mersenne prime (261-1) or: 2,305,843,009,213,693,951.
I like this one because it’s ~eight 8’s and pronounceable:
Two quintillion, three hundred and five quadrillion,
eight hundred and forty-three trillion, nine billion, two
hundred and thirteen million, six hundred and ninety-
three thousand, nine hundred and fifty-one (base 10).
Something else about Mersenne primes, all bits are ‘1’.
Think about that. Think about the fact that as far back
as the 15th century and in ancient times prior,
mathematicians were discovering binary patterns before
they knew what binary was!
I rather like this representation of 261-1:
11

Q: Why do computers love Mersenne primes?
A: Because, you guessed it; they are “powers of 2 minus
1”and as such, they are easily represented in binary, or
hexadecimal. They are also easy to generate. Let's
compute 261-1. We can do it with registers, fifteen 6502
instructions, and 8 bytes of memory.
Note that this version of the program uses the new
65C02 instruction bra which branches unconditionally.
It is one byte less than the 6502 equiv (jmp). The other
nice thing about using this relative branch instruction is
the code is now 100% relocatable.
How it works: After initialization, the carry flag is set
and bits are rotated (right to left), from the carry into the
least significant bit of the accumulator until each byte is
‘full’; then a whole (full) byte, indexed by the y register
is stored; this continues until the x register counter
matches the value on the cpx compare on the 8th line of
this program. When complete, the last byte of leftover
bits is stored at position $0800.

start lda #$00 ;initialize counters
 ldx #$00 ;tax will save a byte

 ldy #$07 ;done after 7 full bytes
loop sec ;preload carry w/1 bit
 rol a ;rotate accum. from carry
 bcs storbyt ;when byte is full
return inx
 cpx #$3D ;aka 61 as in 2^61
 bne loop
 sta $0800,y ;store remaining bits
end brk
storbyt sta $0800,y ;store whole bytes
 dey
 lda #$01 ;prime the accumulator
 bra return

at ‘start’:	 0800 00 00 00 00 00 00 00 00
at ‘end’: 0800 1F FF FF FF FF FF FF FF

1112/2022

2566553616,777,2154,
294,967,295

1,099,
511,627,776

281,474,
976,710,656

72,057,594,
037,927,936

using the single byte
tax opcode to transfer

from A to X

original 6502 does
not have a bra so

we use JMP

Before and after
‘m’emory listings

iPhone photo of the mighty SX-64 and its 5” display

up to: 18,
446,744,073,
709,551,616

https://www.youtube.com/watch?v=v3-a-zqKfgA
https://en.wikipedia.org/wiki/MOS_Technology_VIC-II
https://en.wikipedia.org/wiki/MOS_Technology_6581
https://en.wikipedia.org/wiki/Blitter#:~:text=A%20blitter%20is%20a%20circuit,data%20within%20a%20computer's%20memory.
https://en.wikipedia.org/wiki/MOS_Technology_Agnus
https://worldwide.espacenet.com/patent/search/family/024459083/publication/US3991307A?q=pn=US3991307A

12

Enter Dr. De Jong and his BCD interests
Before the internet and before BBSes, electronics
magazines marketed SBCs (single board computers) and
kit computers to the technical and academic community.
This population of pioneers was significantly smaller
than “the masses” which would ultimately consume
home computers by the tens of millions.
Marvin De Jong was an educator by day but also
published books and papers on topics such as “Chaos
and the Simple Pendulum” and “Mathematica For
Calculus-based Physics”. And like many in the
scientific community, he was a computer hobbyist as
well, publishing a handful of books on Apple II and
Commodore 64 Assembly Language.
But he started with single board computers including the
KIM-1 and the Rockwell AIM-65 and published what I
consider the 6502 compendium entitled “Programming
and Interfacing the 6502 With Experiments”. It is long
out of print but you can have a read on archive.org here.
As discussed in Issue #2 (see pg. 32) of Foenix Rising,
De Jong also published several COMPUTE magazine
articles including a 4-page floating point to BCD
conversion piece that might be worth a look.

What does De Jong’s Prime Number program do
Let’s start with what it does not do; It does not take any
‘input’ whatsoever; instead, it uses hard coded ‘stop
values’ encoded in a set of nested decision statements
which compare (CMP) for immediate mode values of
#$01, #$12, and #$13. This represents the exponent of
211213.
While it’s processing, the original program spins quietly
for 12 minutes or so (at 1 MHz), then fireworks!
Actually, there are no fireworks, but there is output in
the form of ASCII characters beginning with dozens of
zeros (ASCII “0”), followed by the the most significant
digits of 2,814 onwards. 3,376 digits later, it’s done and
a BRK instruction drops control back to the monitor.
We’ll talk about De Jong’s Rockwell AIM-65 on the next
page or two, but suffice to say, it was a primitive
machine with a 20 character display and a 20 character
wide thermal (5 x 7 character matrix) printer.
The print routine (which ultimately calls the ROM based
kernel output routine at $F000) is 29 of the total 85
program instructions and the initialization code is 22
lines long; leaving a mere 34 lines to generate the prime.
The program listing as published is heavily commented
including symbolic labels for branch and jump targets.
There is no memory map per se, but the 1/2 page article
that accompanies the code does a fair job introducing the
memory requirements and variables.
I had a go at entering and assembling the listing with
64TASS for the C256 Foenix Jr. Rev. A dev board and
had a number of problems starting with the fact that the
printed version of the source code did not differentiate
between immediate mode and zero page addressing.

The famous Arcade game use case
As I was researching content for this article, I revisited
Michael Steil’s 6502 YouTube lecture where he
dismissed BCD as “quite boring”, assuming it was “for
financial stuff”.
Atari thought differently and in fact, used it for score-
keeping on the original Atari Asteroids arcade machine,
which leveraged the original MOS 6502.
7397: F8 SED ;set decimal mode
7398: 75 52 ADC ply1ScoreTens,X ;add to players score, tens
739A: 95 52 STA ply1ScoreTens,X ;
739C: 90 12 BCC $73B0 ;increase in thous.? no, branch
739E: B5 53 LDA ply1ScoreThous,X ;current players score, thous.
73A0: 69 00 ADC #$00 ;add in the carry
73A2: 95 53 STA ply1ScoreThous,X ;
73A4: 29 0F AND #$0F ;will be 0 if 10,000 pts. reached
73A6: D0 08 BNE $73B0 ;branch if not 10K for bonus ship
73A8: A9 B0 LDA #$B0 ;len. of time to play free ship
73AA: 85 68 STA sndTimeBonusShip ; sound into timer

73AC: A6 18 LDX curPlayer ;current player
73AE: F6 57 INC ply1CurShips,X ;award bonus ship
73B0: D8 CLD ;clear decimal mode

73B1: 60 RTS

Fact is, as a control word actuated machine instruction,
you can do no better than to use the MOS Technology
implementation of BCD for real time calc and display
use cases, games among them. For this type of use case
(and considering the alternative; writing 100 lines of
assembly), this might be considered the equivalent of
having an onboard FPU in the pre-Pentium Intel CPUs.
An interesting footnote to this topic; I exchanged a few
rounds of mail with Bill Mensch and he shared that due
to the tightness of timing, Atari could not use the [then,
new] WDC 65C02 since math operations took an
additional cycle which threw off the Asteroids timing
loop. This was remedied in the 65C816 and represented
the 3rd time that Bill redesigned the implementation.

Another game related use case
Here is a score keeping related tutorial that is very well
done from Robin of “8-Bit Show And Tell”. It is worth
the 37 minute view (click it to open).

Excerpt of original source from computerarcheology.com

8-Bit Show And Tell is one of my favorite retro resources. With
nearly 50,000 subscribers and over 5 million views, Robin

delivers educational content, expertly edited, without fanfare

12/2022

https://computerarcheology.com/Arcade/Asteroids/Code.html
https://www.youtube.com/watch?v=vnhyGt6URYc
https://archive.org/details/programming-and-interfacing-6502-with-experiments/page/n419/mode/2up

doubled, carrying forward for every double digit BCD
byte across 3K (or 3072 bytes) of ‘calc memory’.
As 1 turns to 2, then to 4, and 8 and passes 10 on its way
to 16 decimal, the value of the byte is adjusted by the
BCD microcode. 16 hex would normally represent 22!
But armed with the understanding that each nibble (4
bits) of the byte can only represent values (digits) 0
through 9, matters improve. You will always (only) see
decimal digits 0 through 9 and while in decimal mode,
the CPU treats addition and subtraction as such.
To illustrate here are several examples:
single digit (0-9) double digit comments
00 = 00 10 = 16
01 = 01 11 = 17
02 = 02 12 = 18
03 = 03 20 = 32 0001 0000 binary
04 = 04 28 = 40
05 = 05 55 = 85
06 = 06 66 = 102
07 = 07 79 = 121
08 = 08 80 = 128
09 = 09 99 = 153

What to know about math in BCD mode: There is
actually nothing to know. ADC (add with carry) and SBC
(subtract with carry) simply work. The CPU’s ALU
performs the math, adjusting as you might expect for
base 10. Printing them to the screen will requires the
use of LSR bit shifts and a logical AND. (more on this
later)

; hex 10 would normally be 16

 decimal but in BCD it’s still 10

1312/2022

References such as CMP $10 actually meant to identify
an immediate compare of #$10, elsewhere, a load of $01
as in LDA $01 actually meant zero page $01.
Luckily, the assembly byte-code output was included in
the left margin of the article so I was able to look up the
opcodes and ascertain the addressing modes from there.
An additional challenge was the source computer system
(the Rockwell AIM-65) afforded the use of all zero page
addresses; not so, for the Foenix; (addresses range $00
through $0F) this range is reserved for memory banking
and DMA, so this had to be relocated.
A final challenge had to do with ‘me’ and my particular
Jr. board which I damaged while inserting one of the
power supplies that I was testing. This resulted in a
number of the legs of the FPGA pulling off the board
which I ultimately fixed, but in doing so, created some
amount of instability that manifests as component
temperatures change. Again, this was caused by me
when I inadvertently flexed the board. But it still works.
Challenges aside, I prevailed, improving my narrow
pitch surface mount soldering skills along the way.

Memory use and ‘the’ calculation
De Jong mentions allocating $0400 to $0FFF to hold
“the number”. After zeroing, computation begins. The
seed value of 1 is stored in location $0400 and is

Doubling code (3 instructions which load, add, store); executed once for each 3072 byte iteration, 11,213 times; TABLE is
the low-byte/high-byte page pointer ($04, $05 indirect indexed by the Y register); this starts the PAGAD inner loop

This is the test / reset portion of the outer loop
whose job is to reset the page table pointer and

look for the combination of low, medium, and
high values, aka the desired exponent

Output loop

De Jong’s source code with callouts

; highest value before carry

Inner loop - traverses each page of the 3,072 byte buffer (can represents up to or 6,144 digits)
Outer loop - tracked with the LO, MID, and HI counters; counts from 1 to 11,213

high nibble

‘1’ low nibble

‘0’

as dec

values

as stored

in hex

Commodore SX-64 version of De Jong’s original code
In this section, we’ll discuss the steps required in order
to re-platform the original code to another 6502 system.
De Jong’s original article mentions: “Owners of other
systems can simply use their own output subroutine”.
Unfortunately, it took a bit more work than just changing
the output routine.
In fairness, the additional work was to accommodate
futures that De Jong would not have seen coming. At
the time of his writing, 6502 systems were extremely
primitive and it was not uncommon to ‘own’ zero page
and therefore have little to navigate around.
Above, we touched on the need to relocate a some of the
zero page address variables in order to accommodate the
Foenix Jr. (reserved locations $00 through $0F). This
also applies to vintage Commodore platforms. The C64
reserves $00 for the 6510 data direction register and
address $01 for LORAM, HIRAM, and CHAREN
banking, not to mention some cassette control lines.
To remedy this (at least for the SX-64 test) we used zero
page locations of $60, $61, and $62 for LO, MID, and HI
(originally $00, $01, and $02).
But we were able to leave the TABLE low-byte/high-
byte indirect pointer at $04 and $05 and in fact, left the
calc buffer at $0400 - $0FFF.
On the SX-64, $0400 is the start of screen memory and
continues through a small unused section, through sprite
shape pointers, and into BASIC program memory. We
own this space!
Finally, we relocated the program itself to $1808 (which
is $1600 higher than the starting location of the original
AIM-65 program, which started at $0208. We do this for
two reasons; first, it is important to get our code up and
out of the way of [still, other] addresses required for this
machines interrupt handler and also away from the
screen buffer; secondly, since I entered and modified this
code in a rudimentary ML monitor; I needed to know
exactly which address I was changing when I made the
last group of modifications (below), and it was easier to
track with an offset high-byte and a matching low-byte.
The final modifications included one JSR, two JMPs, and
three LDA and STA absolute address references. The
‘absolute’ addressing mode is as it sounds; the address is
explicit and final. It is not subject to indexing by a
register and regardless of the location in memory, it will
still point to the same address. As such, we had to
manually patch these 3 byte instructions after the code
was keyed in.
Due to the amount of screen real estate that this gen
Commodore platform offered (40 x 25 or 1,000 bytes), I
was not interested in running the display output portion
of the program, just the calc portion. My aim was to a)
get it working and b) record the run time in minutes and
seconds which was 12 minutes and 40 seconds (close to
De Jong’s quoted 11 minute run time for 211000. I should
mention that I did not disable the IRQ interrupt.

Quick detour: Rockwell’s AIM-65
In 1975, MOS Technology released the KIM-1 as a
development board alongside their 6502 processor. The
name ‘KIM’ was catchy, but in fact, was an acronym for
the killer feature: keyboard-input-monitor.
Rather than rely on front panel switches (as the IMSAI
8080 & ALTAIR 8800 did a year or so prior), the KIM-1
boasted six 7-segment LEDs and a hexadecimal keypad
along with a ROM based machine language monitor.
Steve Wozniak reportedly used the KIM for his earliest
work and published a few Dr. Dobbs Journal articles for
the early 6502 systems, the KIM-1 among them.
As innovative and useful as the KIM-1 was, the addition
of a terminal was important; there was only so much one
could accomplish keying in hex digits and interfacing
(as a human) with a 6 digit display (though Jim
Butterfield and others published a pile of games and
amusements in the First Book of KIM).
Enter Rockwell. Not only did they 2nd source and later
enhance the original 6502,
but they released a vastly
improved development
platform, the AIM-65, and
it had a strong following.
(check this link for issue
number 2 of the official
Rockwell AIM 65
newsletter, “Interactive”)
Advantages over the
KIM-1 included a 40
character, 16 segment
LED display, a line editor
oriented machine
language monitor, and a
40 character (though
small) thermal printer. It also
boasted a full ASCII keyboard and had 5 ROM sockets
(three were free for user
ROMs) which could host
languages such as BASIC,
FORTH, and Pascal.
Of course at some point,
cross-compilers became a
necessity for serious
development; but there is
nothing like an integrated
keyboard and apps in ROM (akin to flash in Foenix
systems) for developing “on platform”.

Ethan Dicks (Commodore and maker enthusiast)
interfaced a 1541 drive to his AIM 65 !! Have a look

at his 6502 tribute, from VCF East 2020 (virtual).

The centre for computing history has an excellent
collection of Rockwell AIM 65 artifacts and info

including an index of magazine articles.
12/2022

As sold (sans case)

The AIM 65’s amazing 16-
segment LED could display

all 64 ASCII characters

14

http://archive.6502.org/publications/aiminteractive/aim_interactive_2.pdf
https://www.youtube.com/watch?v=CrXZJ2r_U_Y
http://www.computinghistory.org.uk/det/25227/Rockwell-AIM-65-Computer/

Overview of F11213JR.BIN . Details, lots.
‘F’ is for Foenix and 11213 is our 1963 prime as in
211213. This .bin file is on the Foenix Marketplace today
but you’ll need to insure that your system does not boot
to kernel.
The pic below is a PET look/feel which, for best results
(my opinion) leverages the 2K PETSCII PET font; a
black screen and a green (phosphor, of course) text
foreground complete the look. (see item ‘f.’ below)
Execution begins with the start address pushed into the
boot vector of $FFFC (and $FFFD), and some
housekeeping is in order. A color palette is initialized
and the screen is cleared with colors plugged in (more
on this below), then the DIP switch selectable font is
loaded into page 3, and the glorious descriptive text is
drawn on the screen.
Each text string is written to x and y coordinates as
defined in the .byte definition itself. Remember, we do
not have a kernel here so had to write the slimmest
version of one.
In this application, the “byte counter” ending values are
plugged in based on the setting of DIP switch 7.
The ‘@‘ sign, ‘0’, and ’S’ representing high (HI), mid
(MID), and low (LO) value variables are updated in real
time as the calc memory proceeds.
The upper portion of the screen is calc memory which
begins with a $01 in location $C000 (the Foenix Jr.’s
screen memory) versus $0400 on the AIM and
Commodore 64 machines.
The field of green ‘@‘ signs signifies that memory is
initialized at zero. If you’ve been around ASCII for a
while, you’ll know that the ‘@‘ symbol is $40 hex (64
decimal) which is just below the alpha range. In VICKY
(as with Commodore prior),
values repeat such that writing
a zero to screen memory
produces an ‘@' and writing a
1 yields an ‘A’.
Program run has 3 distinct
phases; a) initialization which
was briefly described above
and completes in a fraction of a
second; b) calculation, which
we will talk about shortly; and
c) output, which displays ‘the
number’ in the output buffer
window which is conveniently
256 characters in size.
We will discuss more about
initialization when we look at
the actual code below, but let’s
start with by discussing calc
memory, herein referred to as
“The Matrix”. (sorry)

What’s in The Matrix?
More than meets the eye, but not this much:

What you are looking at is the equivalent of phosphor
glow on a CRT or in this case, an iPhone catching a
DVI-I display fading, more irony. Very few of those
characters actually exist in the wild.
Let’s look closely at the first four characters (see
screenshot below). The punchline is the first 8 (least
significant) digits are packed into 4 BCD bytes as
17007831. Oriented correctly (if this were the entire
number), the answer would be 31,780,017. (not a prime)

Clear as mud? Remember, in De Jong’s algorithm
above, he begins with an ‘a’ or a 01 in the first memory
location, then doubles it. Upon each doubling, he adds
with carry, which spills to the next (left) nibble then to
the byte to the right and this math is carried on without
regard to the size of the number in memory.
Upon each cycle of 12 pages of calculations, LO is
incremented until it turns from 99 (BCD) to 100 and is
carried to MID, etc. This continues until 01 12 13.

12/2022

'v' = 22
or 17 hex

aka 17 BCD
'@' = 0

or 00 hex
aka 00 BCD

' ' = 120
or 78 hex

aka 78 BCD

'1' = 49
or 31 hex

aka 31 BCD

most significant BCD pair, however
our calc will complete well short of

the 12 pages (* 256 bytes)

most significant BCD pair at this
moment in time; calc memory
changes constantly across ~ 2
mins of run time @ 6.29 MHz.

least significant
BCD pair (digits)

The “17” identified here

15

12/2022

Displaying the results

At the bottom of his COMPUTE article, De Jong
cautions: “P.S. A lot of leading zeros get printed before
the number starts”.
Said another way, for each unchanged ‘@’ sign, two ‘0’
numerals will be printed, beginning with the most
significant potential numeral, backwards to the first non-
zero digit. At this point, the large prime begins printing.
In the original Rockwell example, this must have been
annoying (I’ll have to ask Ethan).
In our program however, we suppress this by means of
self-modifying code (more on this next time), but this is
the magic moment by which we print out the prime that
our adoring public has been waiting for, so we take our
time getting there.
I thought it would be fun to pile vintage on top of
vintage and leverage something akin to 1200 baud
output. I want the user to appreciate the number, or at
least catch the first few digits of this truly massive
number.
Once the number is fully rendered (anywhere from a
single digit of 22 -1 or 3, to 1971’s crown jewel, 219937 -1
which is 6,002 digits long, you’ll get a special surprise
(decade appropriate). In the next issue, we’ll discuss
how we did it.
The remainder of this article will focus on code and
coding in general. Each of the twelve examples labeled
(‘a’ .. ‘l’) will discuss one aspect of 6502 development, a
new or interesting Foenix Jr. feature, or both. Next
issue, we will finish with the full program listing.
Thank you to Gadget for helping me troubleshoot some
of the issues I was having with my Jr. (after I damaged
it), including providing the code samples that kickstarted
this project. Also to Dr. Marvin L. De Jong (for his
original magazine articles, his books, and most of all, for
his dedication to math and science education).

a. Using display memory as variable or data storage
It’s difficult to peer into memory and view data as it
changes; in fact, it can be become a burden or even a full
time job. In modern IT, analytics is a specialty in itself;
telemetry services, observability, logging, and log
pattern searching requires specialized skills and tools.
In our 8-bit world, matters are simple but viewing
changing values across time brings unique challenges
because facilities to log remotely (or to disk) are scarce
and at any moment, the system is subject to locking up,
vaporizing precious state data during debugging.
Using display memory to store data, changes this.
Screen memory is, after all, just plain memory; It just
happens to be mapped into video circuit (VICKY’s)
view.

Considering its 320 x 240 bitmapped display, the Jr.
might seem limited, but it boasts multiple text modes
including a large 80 x 60 screen. This is greater than 4x
the size of early ‘80s machines and in this program, we
use it for the visualizing calc memory, watching
variables increment, and displaying the calculated
number.
Screen memory is mapped from $C000 to $D2BF on I/O
page 2 and the upper left corner (coordinate 0, 0 or the
0th column and 0th row) is the first byte of this memory
range. It is important to note that the byte value to font
mapping may not produce visually useful data. This is
100% dependent on the font in use. Contrary to
traditional application development, using screen
memory to display data requires nothing more than
locating variables and buffers into this range; there are
no print statements or kernel output routines.
We will touch on fonts below, but it's worth mentioning
that Commodore fonts are well suited for this kind of
work since they sport a high number of printable
characters. (to be discussed next issue)
In the early ‘80s, several utility program used screen
memory and line draw characters effectively. Here are
two early examples:

Ex 1. Kevin Pickell’s “Disk Doctor” utility

Disk Doctor was unique because it allowed free text (or
numeric value) editing within the displayed block (the
cyan region above). I remember following the sector
links from the 1541 disk directory (starting on track 18,
sector 1) into program binaries and editing text
messages, investigating and defeating copy protection
schemes, and learning how block allocation maps
worked and how file types (PRG, SEQ, etc.) were
encoded. Disk Doctor-like tools were indispensable.

Track and Sector editors such as “Disk Doctor”
were popular tools-of-trade in the ‘80s. Notice
the 256 byte buffer in the center of the screen.

The first byte of the sector, a ‘q’ and the second,
a ‘j’, corresponds to the link to track 17 and

sector 10. Using Disk Doctor, you could live-edit
text, modify the starting address of programs,

access hidden regions of disk. Handy !!

16

Ex 2. Michael Weitman’s “M-Term” terminal emulator

b. Managing the Jr.’s I/O memory banking
The modern WDC 65C02 processor used in the Jr. has
many advantages over its MOS 6502 ancestor. But one
thing that has not changed is the addressing scheme. It
still uses 16 address lines (pins 9 - 25) and thus can only
access 64K of memory. Great for 1982, not for 2022.
VICKY’s MMU to the rescue; Through a set of zero
page addresses, four mapping lookup tables provide a
high performance and flexible scheme allowing 8K
pages to bank in from SRAM, flash, and I/O.
Today, we will discuss I/O, which on the Jr. is split
across four 8K banks (all of which attach at $C000) as
follows:
I/O Bank 0 (%00000000): Devices including the stereo
SID sockets, FPGA based PSG cores, the CODEC,
UART (serial or SLIP port), timers, DIP switches, screen
color lookup tables and other functions.
I/O Bank 1 (%00000001): Font memory (the base for
custom characters) and graphics color LUTs
I/O Bank 2 (%00000010): Text display char memory
I/O Bank 3 (%00000011): Text display color memory
(index into foreground/background LUTs).
To use: Upon write to MMU_IO_CTRL ($01), the selected
8K bank is attached at $C000-$DFFF. For example:
LDA #$02 ; select "page 2" text display
STA $01 ; store in register

LDA #$08 ; load 'h' into accumulator
STA $C000 ; store to screen memory 0, 0
LDA #$09 ; load 'i' into accumulator
STA $C001 ; store to screen memory 1, 0

This example enables text display memory and writes
‘hi’ in the first two positions. We will examine a more
full fledged printing example in detail, below.

c. Controlling devices & resources from your own
programs (addressing hardware directly)
If you read the “Kernel” article on pg. 3 or if you are
already familiar with this topic, you’ll know a kernel is
user callable code that controls resources of a computer.
Since we are focusing on the F256 Jr., the resources in
question include the usual suspects: the keyboard,
character display, and probably disk. But on the Jr., it
might also include the serial port or optional WiFi.
Then there is another class of features and devices that
begins with joysticks and gaming controllers and moves
on through audio, graphics, and 6522 timing circuits.
And we would be remiss if we did not mention the RTC
(real-time clock circuit), the CODEC (D/A, converter,
mixer), and other features and addressable components.
Most of these devices are not kernel managed at all, but
directly addressed at documented memory locations,
otherwise referred to as registers.
In the old days, I/O devices and custom chips would be
hard-wired through TTL logic ICs to occupy an address
range but on Foenix systems, the FPGA arbitrates
between buses and devices (some virtual, some
physical), solving for differences in clocking and
negotiating streaming from serial to parallel and back.
The following assembly language code will instruct a
SID chip inserted in the left socket to play a simple bell
tone*. The highlighted lines represent registers; consult
the F256 Jr. manual for a full map.
PLAYBEL LDA #$00
 TAX
LOOP1 STA $D400,X
 INX
 CPX #$17 ; init most of the regs
 BNE LOOP1
 LDA #$32 ; ~5th octave G
 STA $D401 ; stuffed in freq hi byte
 LDA #$69
 STA $D405 ; attack / decay
 LDA #$8A
 STA $D406 ; sustain / release
 LDA #$4C
 STA $D418 ; hi-pass / volume (12)
 LDA #$60
 STA $D416 ; filt cutoff (high)
 LDA #$11
 STA $D417 ; resonance control reg
 LDA #$11
 STA $D404 ; triangle / gate-on (“key on”)

 LDY #$00 ; useless delay loop...
 LDX #$00 ; useless because it merely
LOOP2 INX ; wastes cycles, iterating
 BNE LOOP2 ; 32 * 256 = 8192 times
 INY
 CPY #$20 ; at varied clock speeds
 BNE LOOP2 ; this will no longer work

 LDA #$10
 STA $D404 ; “key off”
 RTS

This screenshot shows a Punter Protocol file
transfer in progress. A filename called “it” (of

course !!) is 6 ‘good’ blocks into a transfer.

In this example, the current block is read from
device #2 (the modem) and stored directly to

screen memory before being committed to disk.

The mild entertainment of the visual helps distract

from the snails-pace 300 baud transfer rate.

12/2022 17

pre-req: initialized CODEC, physical 6581/8580 SID or a clone
in the left socket, and I/O bank 0 selected via MMU_IO_CTRL

*

d. Character output, a how-to (and what for) guide
In item ‘a.’ above, we discussed the benefit of using
screen memory as variable and buffer storage to assist in
debugging during development, for utility/functionality,
and/or for mild entertainment purposes.
This section, which admittedly, is a bit longer than
originally planned, discusses the ins, outs, art, and
history of displaying text on a screen.
The basics of printing to screen requires two, or
optionally, three pieces of information:

1. What character to print?
2. Where on the screen will the character be

written?
3. How do attributes need to be altered in

coordination with writing to character memory
(if at all).

The “what” is obvious; in the most simplistic example,
we are talking about a single character within the
traditional printable alphanumeric range including
special symbols such as ‘!’, ‘#’, and ‘$’. Depending on
implementation, this might also include extended
characters between values 128 and 255. In this range
you are likely to find line draw characters, smily faces,
or something obscure that somebody felt was important
at the time.
The “where” touches upon the concept of a logical
‘cursor’ also known as the insertion point. We are not
necessarily talking about the physical cursor character
which might appear as a thick underscore (underbar) or a
reverse field block; these are artifacts of '70s and ‘80s
terminals; but the same concept applies. We are talking
about the screen location where the next character will
be printed.
In older terminals, the physical/visible cursor was
always on, whether displaying characters on the screen
or while waiting for input; the nostalgia of watching
characters render from left-to-right and top-to-bottom
led by a cursor at moderate speed is heartwarming. On
modern machines (including Foenix), the screen is
painted so quickly, text appears magically and of course,
does not leverage a cursor. Cursors are, of course,
important for input. We will discuss input, physical
cursors, and something called curses in part II of this
article. Today, we are focusing on output and printing.
Terminals are beginning to feel foreign to modern
computers; but just like the IBM Mainframes that I last
touched in my college years, they have not gone away.
Physical CRT terminals may be gone, but there are
several examples of how terminal and serial technology
is still relevant. Here are a few examples:
In a cloud paradigm (Amazon Web Services), a virtual
web based terminal is spawned to connect to your Linux
EC2 or Lightsail instance. The shell is still the sys
admin’s home. Yes, it is tunneled through SSL via a
window in a Chrome browser, but the Linux instance on

the other side thinks a physical terminal is connected,
and the host still obeys XON / XOFF, ctrl-c, and more.
Likewise, within a MacOS or Windows desktop, users of
modern development environments such as Python and
NodeJS depend on a local Terminal app and an
ecosystem of tools that take user input from a command
line and deliver output to a character based window with
capabilities that mirror vintage terminals.
Finally, the USB to Serial connection to your Foenix
debug port is indispensable. You use it to push .hex
formatted code or, via specialized commands, stop the
CPU, pull a range of memory, or update kernel flash.
All of this occurs over a high speed serial terminal
interface created for the earliest 6502 systems (KIM-1).
The teletype (tty) was based on the typewriter, and
essentially had two features (not counting the bell):

• it could print a character and advance something
called “the carriage” one position. (yes, the
carriage carried the paper)

• It could return the carriage, or in our case, the
logical cursor to the beginning of the line

With this background behind use, let’s talk about the
way that screen memory maps to the display.

Video modes and the x / y grid:

The F256 Jr. support 4 character based video modes for
each of two refresh rates. They represent an 80 x 60
screen (or an 80 x 50 screen) and derivations as follows:

@ 60 Hz. 80 × 60, 40 × 60, 80 × 30, 40 × 30
@ 70 Hz. 80 × 50, 40 × 50, 80 × 25, 40 × 25

The upper, left hand corner of the screen, regardless of
resolution, is $C000.
To compute the starting address of the 2nd line of text,
the developer must sense the video mode, and from it,
determine the width of the screen (or set it yourself, even
if it's the default to be safe).
The following table, borrowed from the F256 Jr.
memory map/manual outlines the bit mapping for the
VICKY Master Control Register.

Forgetting about bits 3 .. 7, text mode is enabled by
setting bit 0 of location $D000 to 1; 70 Hz. May be
selected by setting bit 0 of location $D001 to 1; and
either mode may be selected in double-wide (or high) by
setting bit 1 and/or bit 2 of location $D001 to 1.
These settings will dictate the amount of text and
dimensions of the screen, and importantly, the “stride” of
a line (critical for calculations but not used in our
examples).
We discussed stride in a graphics context in issue #2 on
pgs. 10 and 19; have a look, as this concept will be
important as we move on to advanced topics later.

1812/2022

The following graphic details screen locations HOME
(0, 0), column 0 - row 1, and the last character of the
screen assuming an 80 x 60 text mode @ 60 Hz.

To select this screen mode (monitor withstanding),
execute the following instructions:

lda $01 ;load MMU_IO_CTRL
pha ;push to stack to save state
stz $01 ;store 0 to select I/O block
lda #$01 ;select text mode exclusively
sta $d000 ;store to VICKY control reg. 0
stz $d001 ;store zero VICKY control reg. 1
pla ;pull value to restore state

sta $01 ;store to MMU_IO_CTRL

The following table defines starting addresses for the
first 39* lines of the screen.

The following string output routine on-a-budget is
tailored for a single page application (no scrolling). It
relies on a static color palette, initialized along with
screen clear by a subroutine (see ‘e.’ below).
The only ‘feature’ is a plotting function which relies on
the first two bytes of the text message to hold an x, y
location where the first character should be printed.
Some math is required (called out in comments).
The routine will print until a null is encountered. No
error checking is performed; so messages longer than
255 bytes will loop endlessly.
This routine relies on two pairs of zero page pointers
(from_ptr and to_ptr) and the zero page indirect y-
indexed addressing mode, but is otherwise basic. Later,
we will enhance functionality and rewrite the ctrlcode
and txtcolor routines for added functionality.

1 from_ptr = $16 ;zero page 16 and 17
2 to_ptr = $18 ;zero page 18 and 19

3 defcolor = $0200 ;variable for normal

4 pencolor = $0201 ;variable for current
5 ldx message ;x location (10)
6 ldy message+1 ;y location (9)
7 lda #<message+2 ;low byte of string
8 sta from_ptr
9 lda #>message+2 ;high byte of string
10 sta from_ptr+1
outstrng stx x_loc ;save x a variable
12 tya ;move y to accum.
13 asl a ;mult x 2 w shift left
14 tay ;xfer to y for index
15 lda scrntab+1,y ;get high byte of row
16 sta to_ptr+1
17 lda scrntab,y ;get low byte of row
18 adc x_loc ;add x value
19 sta to_ptr
20 lda to_ptr+1
21 adc #0 ;take care of carry…
22 sta to_ptr+1 ;just in case
23 stz from_offset
24 stz to_offset
txtloop ldy from_offset
26 lda (from_ptr),y ;copy loop
27 beq txtdone ;if end of line (null)
28 cmp #$20 ;compare to “ "
29 bcc ctrlcode ;placeholder for now
30 ldy to_offset
31 sta (to_ptr),y ;else store to screen

32 jsr txtcolor ;currently an rts
33 inc to_offset
ctrlcode inc from_offset
35 jmp txtloop
txtcolor
txtdone rts

message .text $0A,$09,"Hello, y’all",$00

scrntab .word $CC30 .word $CFA0
 .word $CC80 .word $CFF0
 .word $CCD0 .word $D040
 .word $CD20 .word $D090
 .word $CD70 .word $D0E0
 .word $CDC0 .word $D130
 .word $CE10 .word $D180
 .word $CE60 .word $D1D0
 .word $CEB0 .word $D220
 .word $CF00 .word $D270
 .word $CF50

19

$C000

$C050

$D2BF

column 0, line 1
aka (0, 1)

$50 = 80 decimal

column 79, line 59
aka (79, 59)

column 0 .. 79

row
 0 .. 59

Screen
row #

Starting
address

(hex)

Screen
row #

Starting
address

(hex)

Screen
row #

Starting
address

(hex)

0 $C000 13 $C410 26 $C820

1 $C050 14 $C460 27 $C870

2 $C0A0 15 $C4B0 28 $C8C0

3 $C0F0 16 $C500 29 $C910

4 $C140 17 $C550 30 $C960

5 $C190 18 $C5A0 31 $C9B0

6 $C1E0 19 $C5F0 32 $CA00

7 $C230 20 $C640 33 $CA50

8 $C280 21 $C690 34 $CAA0

9 $C2D0 22 $C6E0 35 $CAF0

10 $C320 23 $C730 36 $CB40

11 $C370 24 $C780 37 $CB90

12 $C3C0 25 $C7D0 38 $CBE0

‘home’ or (0, 0)

*for brevity, 39 rows are shown; (continued in the code on the right)
12/2022

this notation won’t
work; (the assembler
will bark) it’s just for

illustrative purposes;
the actual code will

include the complete
60 line table

39th row
continues

from here (but
we started at
0 so really, it’s
the 40th-50th)

Line
numbers are
for reference

only; the
code posted

on the
Foenix
Market-
place is

sequenced
differently.

Regardless, let’s discuss options for invoking extended
attributes via inline characters stream. We’ll touch upon
each (of 3) briefly and then move on to a specification:
1. Use an inline non-printable control character with a

value of less than 32 decimal. Expressed within an
assembly .text directive, we will use $11 for
FLASH and $15 for NORMAL. Example follows:

.text $0A,$09,"Please “,$12,"FLASH ME"
 ,$15," - thank you, kindly!",$00

(we will leverage this scheme in our not-quite-on-a-
budget algorithm on page 22)

2. Use a sequence of codes which are escaped for
example, “{ESC}[1M” to represent the a BOLD
directive. The benefit of this type of control
sequence is ease of detection (always starting with
ASCII 27) and also, it allows for an extensive library
of features since it is multi-character; the downside
is twofold: a) if you really want to ‘send’ an escape,
you’ll need to escape it by duplicating the code (a
minor nuisance); and b) it requires more chars for
the directive (4) and gets ugly in source. This
happens to be the Digital Equipment (DEC)
standard, leveraged in the VT100 specification.

3. Use a printable graphic characters which, by
convention, can be embedded within a string. It
should be a character you would not normally type.
Commodore chose this route with the PET, VIC 20,
C64, C128, C16, and Plus/4 line of products. By
accident or design, it was a well architected scheme
and it stood the test of time.
See the Leonard Tramiel callout in the FONT
discussion (item ‘f.’) below.

Retro flashback ASCII
terminals such as early
ADDS Regent and DEC
VT (video terminals)
included ctrl-code
selectable debug
modes which, when
invoked, output
printable glyphs for
ASCII values 0 .. 31;
the chart to the right
from a vintage terminal
doc leveraged a font
for this purpose.

This was useful in
debugging encoding issues, while building Unix
TERMCAP entries, or just for sport.

It was not uncommon for terminals to have such a
debug mode; it was uncommon for a manufacturer to
dedicate bit mapped ROM space for this range. The
ASCII backspace, bell, line feed, and carriage return, are
among the more common single character non-
printable ASCII characters that are still relevant.

It took a while to get here, but let's talk about the ‘how’.
How shall characters be rendered on the screen. What
color should they be printed with, and against what
background? If double-wide characters are supported,
how do we invoke this mode? Does a character set exist
to allow underlined characters or reverse field? So many
questions …
Few of us had the opportunity to work with the
hardwired, impact driven terminals of the early ‘70s. In
the time between characters leaping off the print platen
and into a cathode ray tube, enterprising engineers were
thinking about how to support the conventions of the
past while trying to innovate and navigate a future.
ROM based character sets brought opportunity for text
highlighting in the form of bolded, reverse field, and in
some cases, embedded underline characters. Solid state
CRT terminals supported cursor movement in two or
four directions and could seek to start-of-line, end-of-
line, top-of-form (screen), etc. Ultimately, terminals
supported character-based windows and overlays, scroll
and no-scroll zones, programmable status bars and more.
By the birth of the personal computer, this innovation
led to a commonly accepted way to tackle these
challenges, and it didn’t take much for the earliest 8-bit
machines to add line draw, cursor control, and other
capabilities. The seemingly simple task of writing text
to a screen was no longer a simple map/lookup, calculate
address, and write to memory.
Of course, the Apple I had none of this utility. A portion
of Steve Wozniak’s board was dedicated to “Terminal”
functions; it included a (really) dumb terminal with three
features: A genuine ASCII keyboard, an accompanying
opinionated (though upper-case only) character set, and
a hardware based Signetics character generator, which
together was capable of printing from left to right and
from top to bottom. The Apple I featured a 40 x 24 line
screen and a 5 x 7 bit font. It also supported “auto-
scrolling”; apparently, a big deal at the time.
Apple II’s ROM based ‘Integer’ BASIC had a VTAB
command that could move the cursor to a given line on
the screen, but the world would have to wait for
Applesoft BASIC for real power; namely, commands for
HOME (clear), HTAB, INVERSE, FLASH and
NORMAL text directives.

Increasing our budget… a little
Let’s expand upon our ‘on-a-budget’ output routine
above and consider implementing a BOLD highlighting
capability and a FLASH feature. I’ll mention here that
FLASH is a bit tricky because there is no hardware
based (or FPGA) mechanism to accomplish this; we will
need to write this ourselves and leverage IRQ interrupts
and an enumerated set of palette entries for it.
BOLD is also tricky, because we are limited to
characters which are only 8 pixels square so there is no
feasible way to thicken or antialias a font. This would
be doable if we restricted ourselves to white and gray.

2012/2022

https://digital.com/digital-equipment-corporation/
http://www.climagic.org/mirrors/VT100_Escape_Codes.html

init_pal ldx #0
_loop lda _palette,x
 sta TEXT_LUT_FG,x
 sta TEXT_LUT_BG,x
 inx
 cpx #64
 bne _loop
 rts

_palette
 .dword $000000 ;C64 black (BLK)
 .dword $ffffff ;C64 white (WHT)
 .dword $68372b ;C64 red (RED)
 .dword $70a4b2 ;C64 cyan (CYN)
 .dword $6f3d86 ;C64 purple (PUR)
 .dword $588d43 ;C64 green (GRN)
 .dword $352879 ;C64 blue (BLU)
 .dword $b8c76f ;C64 yellow (YEL)
 .dword $6f4f25 ;C64 orange (ORN)
 .dword $433900 ;C64 brown (BRN)
 .dword $9a6759 ;C64 pink (PNK)
 .dword $444444 ;C64 dark gray (DK GRY)
 .dword $6c6c6c ;C64 gray (GRY)
 .dword $9ad284 ;C64 light green (LT GRN)
 .dword $6c5eb5 ;C64 light blue (LT BLU)
 .dword $959595 ;C64 light gray (LT GRY)

About the code
The core of the code on page 20 does not need to change
but we will resolve two labels, currently non-functional
stubs. We’ve already got a trap for null (end of string)
on line 25 and a bcc branch to ctrlcode on line 27 for
char values less than 32. We also have a jsr to a
subroutine called txtcolor which takes care of color
for printable characters (discussed below).
From a house keeping perspective, all we need to do is
increment the y register to keep our index moving and
ultimately, jmp or branch back to txtloop on line 24.
The ctrlcode routine uses a series of compare and
branch instructions. If the feature list was longer and
more varied, a jump table with a linear search would be
appropriate. But we’ve organized our control codes in
such a way that a cmp with #$18 and accompanying bcc
branches to the setcolor routine where a simple index
into the predefined palette is used. Let’s knock off these
routines one-by-one (starting with the most simple):

bell jsr playbel
40 jmp txtloop

clrscrn jsr clear
42 jmp txtloop

normal lda defcolor
44 sta pencolor
45 jmp txtloop

flash lda pencolor
47 ora #$08
48 sta pencolor
49 jmp txtloop

Medium budget kernel output routine specification
Hex ASCII Feature
$07 BEL Plays SID bell sound (see pg. 18)
$11 DC1 CLEAR SCREEN*
$12 DC2 FLASH on
$13 DC3 RVS field on
$15 NAK NORMAL (resets mode attributes)
$18 CAN BLK text color
$19 EM WHT text color
$1A SUB RED text color
$1B ESC CYN text color
$1C FS PUR text color
$1D GS GRN text color
$1E RS BLU text color
$1F US YEL text color

This routine is deemed medium budget because it
includes a few interesting features that you might expect
from an output routine, but it falls short in completeness
and has limitations since attributes are mutually
exclusive (e.g. it is not possible to have reverse-field
flashing; you can only have one of the two, or normal
text. A color an be normal or reverse field or flashing.
This scheme includes something old and something new.
The old is obvious, it’s the bell. It’s a relic of days past;
^g for the OGs. The new is also something old, but it’s
new again as of this week. It is support for text colors
represented on keycaps, recently announced for the
F256K (see pg. 26). Foenix systems have always had
wide ranging color support, but key color selection is
again front and center.

Make color easy again; change your default color with
a simple keystroke and poke a background color and
border just because you can!

Text mode palettes
The F256 Jr. supports a 16 color palette for the text
foreground and a separate 16 color palette for the text
background. They need not contain the same data, but
for our purposes, we will make the first 8 of each
identical so we can orchestrate a true reverse field effect.
We’ve covered this prior (in Beginner’s Corner issue #2,
pgs. 21-25 and in issue #3 pgs. 22-23) but to quickly
recap, each color is composed of a 24-bit value
represented as RGB. Including the alpha channel byte
(currently not implemented in VICKY), each color
requires 4 bytes. 16 colors * 4 bytes = 64 bytes or $40
bytes hexadecimal. Importantly, they are ordered (in
memory) in reverse; aka (B)lue, (G)reen, (R)ed, (A)lpha.

The foreground color LUT is located at $D400 and the
background color LUT is located adjacent, at $D440.

Once established*, double nibble bytes** stored in I/O
bank 3 (see ‘b.’ on pg. 18) correspond to characters
stored in bank 2 on a 1:1 basis.

2112/2022

I stole
this from
Gadget

double-nibble as in $0C where '0' hex represents the 0th
foreground color (BLK) and 'C' = background (GRAY)

**

… and
these
from
Paul’s
github

$D800

$D840

code to do this (top) requires I/O bank 0 selected*

We support 8 text colors; (with
a catch and a hidden feature)

the upper 8 are for flashing; an
IRQ shim controls a counter

based on the VICKY text
cursor flash rate (see doc

table 3.5) which changes
the FG color to match its BG

necessity; mother of invention

https://github.com/pweingar/C256jrManual/raw/main/tex/f256jr_ref.pdf
https://github.com/pweingar/C256jrManual/raw/main/tex/f256jr_ref.pdf

ctrlcode from_offset
66 cmp #BEL

67 beq bell
68 cmp #CLR
69 beq clrscrn
70 cmp #NOR
71 beq normal
72 cmp #FLA
73 beq flash

74 cmp #RVS
75 beq reverse
76 cmp #BLK
77 bcc txtloop ;if < lowest (black)
78 sec
79 sbc #$18
80 tax
81 lda colors,x
82 sta pencolor
83 jmp txtloop

Theory of operation
defcolor = pencolor is written to all locations of
color memory when the screen is cleared and pencolor
is returned to defcolor anytime the NORMAL control
code is embedded. This might seem like a peculiar
move since we are updating every character’s color
memory every time, but we are taking this step in case
screen memory is written to directly as explained in item
“a.” above. One such use case might be a text
windowing environment.
pencolor is what is unconditionally written to color
memory as text is rendered on the screen; the output
routine merely writes the character to screen memory,
flips the I/O bank to text display color, and stores the
current color for the corresponding character.
When RVS field is requested, the pencolor is altered
such that the upper and lower order nibbles (4-bits) are
swapped. The code to the left pushes 4 bits left-wise,
rotating the 7th-to-carry then into the bit 0 via an ORA.
FLASH does something we’ve addressed prior. In issue
#2 of beginners corner, we altered the color LUT for
sprites by periodically changing the color of the Foenix
Balloon beacon; here, we are managing a counter tied to
the IRQ (every 1/60th of a second), and when at the
FLASH ‘point’, will change the upper 8 (unusable) pen
colors to have the same RGB as their background. There
are many ways to accomplish this but this was fun to
write. It comes a the expense of wasting 8 of our screen
colors, however. As mentioned, “on a budget”.
An alternative could be to maintain list of screen start
and stop locations to be flashed, and literally erase these
characters and re-draw them. (this is madness).
Another is to only permit flashing for one or two colors;
this would limit the waste, but is restrictive.
Let's finishing things up for now with a complete
txtcolor routine, and code to clear the screen.

Reverse Field - a slightly more difficult problem
reverse lda pencolor
51 asl a
52 bcc rev_bit1
53 ora #%00000001
rev_bit1 asl a
55 bcc rev_bit2
56 ora #%00000001
rev_bit2 asl a
58 bcc rev_bit3
59 ora #%00000001
rev_bit3 asl a
61 bcc rev_done
62 ora #%00000001
rev_done sta pencolor
64 jmp txtloop

This code might seem repetitive, it is. Is it efficient?
Good question. Have a look at the alternative below and
think about which is better. As is, the above example is
15 instructions, 33 bytes in length, and in a worst case,
requires ~35 cycles. It's subtle, but the worst case in this
example is to NOT branch (all bits need to be commuted
to the right nibble); this consumes one more cycle (the
ora consumes 2 cycles) than a branch.
The routine below is shorter and may appear more
efficient, but it’s nearly twice as long in cycles; again,
considering a worst case scenario which is unlikely and
actually pointless*. The routine below is 10 instructions,
23 bytes in length, and consumes ~59 cycles. We burn a
number of cycles getting to and returning from the
setbit branch (and this option is taken every time in a
worst case scenario). Ideally, it’s good to know the
probability/distribution of your data when you design a
default path. In this case, it's actually arbitrary as it
depends on color use. In the end, the example above is
preferred. Sometimes, simpler is better.
As a piece of code that we will only execute when
reverse field is invoked, efficiency won't matter; but if
code like this was embedded in an IRQ routine and
iterating hundreds of times, variability or bloat could
affect the stability of the system or at a minimum,
squander resources. We will cover IRQs next time; they
will be instrumental in ‘animating’ the FLASH routine.

reverse lda pencolor
 ldx #$04
rev_loop asl a
 bcs setbit
rev_incr dex
 bne rev_loop
rev_done sta pencolor
 jmp txtloop
setbit ora #%00000001
 jmp rev_incr

We are nearly done with the setup, decision flow, and
method of tracking attributes. You are probably getting
closer to guessing how this works. Let’s have a look at
the main branch code and then discuss.

2212/2022

with all bits set, we are rotating $FF to be… also $FF.
Pointless, but in this case it is not worth additional code
that would otherwise address corner cases.

*

In the old days when screens had 960 or 1,000
characters, a loop with indexed sta statements could
take care of this without calisthenics. One could merely
use store instructions indexed on consecutive pages:
loop sta $c000,x ; or $0400 on a C64, etc.
 sta $c100,x
 sta $c200,x
 sta $c300,x
 inx
 bne loop

This will work on a Foenix 40 x 25 screen but not on the
ole’ C64 where we knowingly stomp on 24 bytes of
memory that does not belong to us; sprite pointers!
On a Commodore 64, screen RAM runs from $0400-
$07e7 and it is followed by 16 bytes which are unused,
and then 8 bytes for sprite pointers. This might be ok if
we are not using sprites, but it’s sloppy. A better method
is to move the sta $c300,x to a small loop that will
spin for $E7 iterations to clean up the remaining bytes.
Here comes the fun. On a F256 Jr., we will need nearly
4x the number of absolute store statements (15 of them)
to accommodate the 80 x 60 screen. This is boring.
Let’s use 15 lines of code to do something crazy instead.
The following code runs a fill loop that stores full pages
worth of the passed in accumulator values in the inner
loop and then increments the high byte of the sta such
that the $c0 page advances to $c1 and so on. This outer
loop continues until high byte = $d2 and then we clean
up with a small loop similar to what we discussed above
(for 192 iterations). Finally, we ‘fix’ the high byte that
is part of the original code before exiting.
fill ldx #$00
fillloop sta $c000,x
106 inx
107 bne fillloop
108 inc fillloop+2
109 ldx fillloop+2
110 cpx #$d2
111 bne fillloop
112 ldx #$c0
smfill sta $d1ff,x
114 dex
115 bne smfill
116 ldx #$c0
117 stx fillloop+2
118 rts
We could have done this the “6502 way”, leveraging a
pair of zero page addresses as we did with to_ptr
above, but this approach is eyebrow raising and a
somewhat advanced topic, so it's worth challenging
ourselves to mess with memory and sleigh the one-off-
error demons in the process.
We will take this one step further next issue when we
modify code branching for an expendable (single-use)
use case to improve performance in a loop that iterates a
few thousand times. Saved (or spent) cycles can really
add up! It is unlikely that anybody will ever see your
code, but you'll know it’s there.

Text color - managing color display memory
Lines 28 and 29 of the code on pg. 19 determines
whether or not the next character in the string is a
control code character or not; if so, ctrlcode is called;
if not, however, text display memory is updated via this
code on line 31:
31 sta (to_ptr),y ; store to screen

… of course we still need to update color memory!
The beginning of the code block on lines 11-22 does all
of the work to convert the x and y location to a memory
address and writes the low-byte/high-byte pointer pair in
to_ptr. As luck would have it, color memory exists on
a parallel plane to character memory, so we merely need
to change the I/O bank (3 = color mem) and then change
it back (2 = text mem) before returning. Line 80 should
look familiar to the line above. (it’s identical)
Here is the complete color subroutine:
txtcolor lda #$03
85 sta $01
86 lda pencolor
87 ldy to_offset
88 sta (to_ptr),y
89 lda #$02
90 sta $01
91 rts
Could this be made more simple? Of course it could; we
could smash it into the code block above and avoid the
jsr and rts but it’s good practice to isolate routines
that will be shared; or to avoid complexity to make code
more readable. (our aim)

e. Clear screen subroutine
This routine clears the screen by writing ASCII 32 (“ “)
to text memory and pencolor to color memory. We do
this in two passes and each pass uses the main loop, and
a secondary, small loop.
The clear portion of this routine loads the accumulator
with the desired character value and takes care of the I/O
bank (2 = char mem) before calling fill.
Next, it then loads the accumulator with pencolor,
makes it the default (defcolor), sets the I/O bank (3 =
color mem), and again calls fill.
There are at least 4 ways to do this (to be discussed next
time) but this one is the most fun as you will see.
clear lda #$20
93 ldx #$02
94 stx $01
95 jsr fill
96 lda pencolor
97 sta defcolor
98 ldx #$03
99 stx $01
100 jsr fill
101 ldx #$02
102 stx $01
103 rts

2312/2022

Inner loop - no cmp needed;
the zero flag resets us for the

next page

Outer loop - bumps the high-
byte address until $d200 is

reached

This will restore the $c0 high
byte that we started with (for
next time !!) . If we don’t do
this, we’ll create a mess just
like C programmers that don’t
mind their *p’s and queues.

be unacceptable. It wasn’t the end of the world, but
Commodore was definitely the outlier.
Whether or not they made up for it by affording a rich
graphic set is up for debate and argument. One thing
Commodore did do well was to incorporate a data entry
and encoding methodology into the kernel, place
symbols on keys, and (in 1980) extend the set to support
color. The quoted input mode, frustrating at first, was
instrumental in putting all of those graphic symbols,
colors, and cursor control into the hands of the masses.

In case you wondered where the ‘ ’ came from, thank
the 1963 ASCII standard. In 1967 it became the caret ‘^’
we know today. Check out this retrospective from
University of Turku and Aalto University in Poland,
which lead me to this amazing online PETSCII editor.
An outstanding resource for font data can be sourced
from this github repo. I stumbled upon it from this
ATARI site. If you are Unix savvy, a pulled .FNT from
the github produces viewable output as follows:

xxd -g1 -b -c1 ACADEMY.FNT | tr 0 ' ' |
tr 1 ‘x’ (my SparcStation is gone!; this is MacOS*)

Provided the font is 8 x 8, it will be load-ready into the
F256 Jr. without fuss. The following section explains.

f. Using redefined characters (aka fonts)
There is only so much you can do with an 8 x 8
typeface. Across the years, numerous examples of 8-bit
machine character sets have been used and abused.
In this section, we will cover three historically
significant examples, talk about resources where you can
nab your own fonts, and then examine code for use in
your programs (on the F256 Jr., redefined character sets
are easier than you might expect).
Example 1: Apple I and the aforementioned Signetics
2513 character generator. Billed as an 8 x 5, the top line
was always blank in order to provide vertical spacing

between characters. On the
left is a taste (1/2) of the set
from the original Signetics
documentation (linked
above). 64 characters in
total; nothing but upper
case alpha + numeric +
ASCII special symbols.
This was the starting point.

Example 2: Apple II (and the II+) added inverse and
flashing in addition to a 4th repeated block of the same
character set for no known reason (not shown). Apple

was not ready to
support lower

case text yet
(the keyboard
wasn’t yet
equipped for it
either). But
reverse field
and flashing
(with
Applesoft

support to
leverage the new
video modes) was

a step in the right direction. The IIe delivered lower case
for the first time for Apple, however graphics mode
kludges and add-on cards with keyboard mods were
popular in the II+.
Example 3: Commodore PETSCII was designed jointly
by Leonard Tramiel and Chuck Peddle as part of the
integration of Microsoft BASIC, released in 1977 on the
first Personal Electronic Transactor (PET). In a wicked
twist that cursed Commodore for years, they based the
original set on the 1963 version of ASCII (which did not
have lower case) rather than the 1967 version that
everybody else was using. This meant that the default
set would have upper case in the correct sequence but in
a mixed mode (upper/lower), Commodore opted to
retain compatibility with their upper case (and graphic)
only character set and swap cases such that programs
encoded for the default upper case would default to
lower in mixed case mode. (The opposite would have
had encoded text in broken graphic chars which would

2412/2022

flashing (trust m
e)

no
t s

lo
t m

ac
hi

ne
 re

el
s

if you grew up (or worked professionally) with Unix, you are (I am) utterly thankful that MacOS is based on MACH,
which was derived from Carnegie Mellon’s version of Bell Labs Unix. Thank NeXT and Steve Jobs for that one.

*

https://czasopisma.uni.lodz.pl/Replay/article/view/5930/5595
https://petscii.krissz.hu/
https://github.com/TheRobotFactory/EightBit-Atari-Fonts/tree/master/Original%20Files/FNT
https://atari8bit.net/projects/artwork/atari-fonts/
https://www.applefritter.com/files/signetics2513.pdf
https://www.applefritter.com/files/signetics2513.pdf

Editing characters within source
One other method that you might find useful is to
express bitmaps in binary using assembler directives. A
suitable tile editor would be better, but this WYSIWYG
approach will suffice in a pinch.
The following was pulled from the ATARI (400/800
family) font set; the full character set is available on the
Foenix Marketplace.
;$3F-underline ;$40-heart card ;$41-mid left win
.byte %00000000 .byte %00000000 .byte %00011000
.byte %00000000 .byte %00110110 .byte %00011000
.byte %00000000 .byte %01111111 .byte %00011000
.byte %00000000 .byte %01111111 .byte %00011111
.byte %00000000 .byte %00111110 .byte %00011111
.byte %00000000 .byte %00011100 .byte %00011000
.byte %11111111 .byte %00001000 .byte %00011000
.byte %00000000 .byte %00000000 .byte %00011000

Closing thoughts for now…
It is our hope that you find some of this entertaining,
educational, or maybe even usable in your code.
We will continue this discussion in the next issue with
the following topics:

g. keyboard input on a budget (again, sans kernel)
h. Reading DIP switches
i. Interpreting the real-time clock circuit
j. Leveraging the VIA 6522 timers
k. VIC-20 style bit-mapped graphics
l. Reading ATARI style joysticks

Spy photos from Foenix Labs

The F256 Jr. supports a single character set which is
instantiated by VICKY (and potentially altered by the
kernel) during initialization.
The dimension of the set is 8 (pixels wide) x 8 (pixels
high) x 256 (characters) such that a stream of bits and
bytes are ordered with $C000 containing the top 8 pixels
of the first character, $C001 containing the 2nd of 8
rows of pixels for the first character, and so on.
The character set sits in memory (I/O block 1) between
$C000 and $C7FF. To load a new set into memory,
simply copy from anywhere into this region but be sure
that zero page $01, the MMU_IO_CTRL, contains #$01.
Important to take care that your alphanumeric characters
align with the representative values else the machine
could be rendered unusable (if typing ‘a’ places an ’s’ on
the screen, or worse). Note that the Foenix platform
does not currently have an NMI bound hot key (that on
Commodore platforms would reset the system to its
standard ROM based character set).
What’s on your F256? Depending on your FPGA load
and kernel flash, you may have the following official
released character set (as of end of December 2022).

This set features alphanumerics with ‘g’, ‘j’, ‘p’, ‘q’, and
‘y’ descenders, a set of dithered fill patterns, graduated
horizontal blocks in two styles, card suits, and other
useful glyphs. Unlike PETSCII, characters are ordered
such that familiar symbols are adjacent to each other.
Created by Foenix community member and Discord user
Micah , you can secure it from his github here.

Incorporating a font file within 64TASS source
The following assembler directive will load the
identified file into memory as follows:
charset .binary "petscii.bin", 0, 2048

The following code, performs the copy, overwriting the
default character set with characters of your choice:

 lda #<charset
 sta FR_PTR
 lda #>charset
 sta FR_PTR+1
 lda #$C0
 sta TO_PTR+1
 stz TO_PTR
 ldy #$00
charloop lda (FR_PTR),y
 sta (TO_PTR),y
 iny
 bne charloop
 inc FR_PTR+1
 inc TO_PTR+1
 lda TO_PTR+1
 cmp #$c4
 bne charloop

2512/2022

don’t forget to set
(and later reset)
to I/O bank 1

 MC68040 - 3.3V A2560X CPU module

 FNX6809 - MC6809 implemented in FPGA

(a drop in replacement for the WDC65C02 for F256 Jr.)

https://github.com/WartyMN/Foenix-Fonts

What does $595 buy? In December of 1982, the answer was the Commodore machine pictured below (left). When
compared to Apple, IBM, Tandy and others, the Commodore 64 was a bargain. Not only did it boast 64K of RAM (others
struggled to make 32K or 48K affordable), but the capabilities of the machine were class-leading in nearly every regard.
Through the insistence of Michael Tomczyk (Commodore marketing guru) the company secured the back page of popular
computer magazines and was relentless in product development, distribution, and advertising. This, combined with an in-
house chip fabrication capability and Jack Tramiel’s shrewd business practices, Commodore dominated the market for
many years. They leveraged an already established PET dealer network at first, then sold through a growing population of
computer stores, and ultimately, toy stores worldwide.
Fast forward to today, and the inflation calculator suggests that $595 in 1982 dollars adjusts to $1,835 in 2022 dollars.
For approximately 1/3rd of this inflation adjusted price, $595 in 2022 currency gains access to the natural successor to the
C64, with vastly expanded and added capabilities.
On December 20th, Stefany Allaire of Foenix Retro Systems announced the upcoming release of the F256K computer.
Your $595 (USD) secures a place in line for the newly announced machine. Created in the spirit of the C64, the F256K
features a modern mechanical keyboard (with your choice of keyswitch type), and all of the F256 Jr. features spun into a
slim desktop style case, complete with a cartridge/RAM expansion slot. With a WDC 65C02 CPU running at 6.29 MHz.,
accommodations for two SID chips (BYOS*), a powerful FPGA based graphics engine with dual embedded PSG sound
chip instances, Commodore standard IEC peripheral support, multiple text modes (up to 80 x 60), DVI-I video output, and
much more; the combination of features and cost make it feel like Christmas 1982 all over again.

Back Page - Vintage Advert Time Machine
Happening now - the F256K desktop announced and on offer

2612/2022

Then (1982) Now (2022)

The first round offering is available for sale for a limited time, for April 2023 shipping. See www.c256foenix.com/
f256k for details and full specifications.

*BYOS: bring-your-own-SID; the F256 supports +9V or +12V SIDs, not included

http://www.c256foenix.com/f256k
http://www.c256foenix.com/f256k

	Momentum

