
Early Arcade issue
This issue pays homage to early coin-
op arcade. The initial intent was to
start with the history of Atari Tank,
but after some research, we’ve opted
to take a step even further back (6
more months) to Atari’s May 1974
release of “Gran Trak 10”.
Gran Trak was an early, if not the
earliest driving game and was released
18 months after Nolan Bushnell’s first
foray, Pong. It is also known for
almost pushing Atari to insolvency.
Tying this to August’s “Classic
Arcade” puzzle, we will focus on a set
of titles from 1980 to 1984 through
the lens of my experience (and maybe
yours), being a teenager in the ‘80s.
The 2nd half of this issue is all Foenix
and we will begin by challenging you
with a puzzle of a different sort to
test your familiarity with hardware
component use in a “what’s wrong
with this picture” activity.
Ernesto Contreras is back as a
contributing developer with an
article on the Foenix RTC (real time
clock). We will also cover the v1.1
update to his Foenix Sprite Editor
and discuss how to leverage color
palettes saved from the editor.
Beginner’s Corner closes our 3-part
Foenix Balloon series by throwing as
much variation as possible into a 25
line BASIC816 program.
Next issue, we will focus on A2560K.
Mine has been neglected, and is
sitting on my piano looking angry!

Thank you, as always.
-EMwhite

Issue #3 - update 1

VTOC - volume table of contents

Last month we
introduced the
C256 Jr. by
way of a Rev A
dev board that
arrived just
prior to going
to ‘press’.

This month,
we discuss ITX
power, and
share a few
action shots of
my one-off
concept case.

Resources, publisher’s notice, and Arcade word search solved 2

Gran Trak 10 - Atari’s 1974 ‘driver’ - the first of many to come 3-5

Classic Arcade - We discuss late ‘70s and early ‘80s Arcade and examine a
handful of noteworthy titles released between 1980 - 1984

6-12

Arcade before Arcade - Sega’s wonderful mid ‘60s and early ‘70s Electro-
mechanical Arcade in pictures 13

Pacman - An examination of an interesting aspect of the original design &
a preview of a Ms. Pacman demo, actively being ported to Foenix C256

14-15

“Just 4 Fun” - A ‘tear-out’ activity book exercise for the kid in all of us.
MAD Magazine meets Highlights Children’s Magazine meets Foenix 16-17

Date and Time on your Foenix - written by Ernesto Contreras 18-20

Foenix Sprite Editor update: Ernesto releases v1.1 and we discuss
some of the new features, plus, saving and leveraging palette LUTs 21-23

Beginner's Corner #3: Lightweight Sprite animation in 25 lines or less !!
Revisiting last month’s challenge with a complete & working prototype 24-28

Foenix Junior - The Prod release is officially announced and available on
pre-order, rebranded as the “F256 Jr.” 29-32

Featured Photo - ‘wired and ready’ - C256 Jr. dev board

But the big news is, the prod candidate Rev B board was submitted for
fabrication earlier this week. Renamed, the F256 Jr., there is even more
utility packed into the small package. Pre-order is now open.

September / October 2022

http://c256foenix.com
https://en.wikipedia.org/wiki/Mad_Fold-in
https://en.wikipedia.org/wiki/Highlights_for_Children

git and URL Resource Directory

Updated each issue, this space contains links to public
Foenix related development efforts

Foenix Rising is a user-supported, not-for-profit
bimonthly hobbyist’s newsletter published in Murray
Hill, New Jersey, USA supporting Foenix Retro Systems
products with a focus on software development and
related retro technologies.

Distribution: ~210-1

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’
Correspondance:

Foenix Retro Systems Home Page
Foenix Discord Invite
Stefany Allaire Patreon Page
Stefany Allaire Twitter
Foenix Marketplace content ‘store’
VCF East 2022 Foenix Booth (virtual tour)

Links to other Foenix Resources:

209/2022

Across a period of only 5 to 8 years, coin-op solid-
state and microprocessor based Video games
overtook Pinball’s 30+ year head start, ushering in
modern incarnations of the Electro-mechanical
Arcade that once populated the midway.
Pinball benefitted from the advent of solid-state
electronics as well, but the [then] modern Arcade
(which we now call ‘classic’) kick-started a craze that
swept across Japan, North America, and the world.
The earliest mechanical Arcade games gave
designers a blank canvas, limited only by the
imagination of design teams. In reality, material
manufacturing limits, physics, and cost played a role.
Over time, leaf switches, motor driven belts, stepper
and score motors/reels, and plastic moulded
scenery was displaced by a 13” CRT, one or more
general purpose microprocessors, and numerous
integrated circuits. The result was otherworldly.
Imagine trying to implement Pacman, Robotron
2084, or Marble Madness in the physical world.
Attempting such a feat would be, well… madness!
40 years later, it would not be incorrect to suggest
that the advent of Arcade and the tech that drove it
sparked a fire that attracted an entire generation of
young people to a then ‘new’ curriculum called
“Computer Science”. It also introduced gaming
consoles and home computers to households.
With a few exceptions, the titles above were among
the most popular and innovative. The front 1/2 of
this issue of Foenix Rising is dedicated to coin-op
Arcade with Foenix tie-ins sprinkled throughout.

bold = newly added or updated

Lang https://github.com/daschewie/FoenixBasic68k

Utility https://github.com/daschewie/FoenixEdit

Game https://github.com/dtremblay/c256-tetris

Utility https://github.com/dtremblay/c256-vgm-player

Game https://github.com/dtremblay/fraggy

Utility https://github.com/econtrerasd/Foenix-Sprite-Editor

Utility https://github.com/econtrerasd/playSong

Library https://github.com/econtrerasd/VickyGraph

Kernel https://github.com/ghackwrench/OpenKERNAL

Utility https://github.com/hth313/Calypsi-Foenix-guide

Utility https://github.com/hth313/petit-fatfs-foenix-jr

Samp code https://github.com/noyen1973/C256-Foenix

Utility https://github.com/paulscottrobson/junior-utilities

Lang https://github.com/paulscottrobson/superbasic

Env https://github.com/Trinity-11/FoenixIDE

Utility https://github.com/vinz6751/FoenixSamples

Env https://github.com/vinz6751/genxtos

highlighted = mentioned this issue

http://c256foenix.com
https://discord.gg/gzEQSKagN5
https://www.patreon.com/bePatron?u=56480700&redirect_uri=https://c256foenix.com/?v=b174a31115af&utm_medium=widget
https://twitter.com/StefanyAllaire/status/1560776205716008961
http://apps.emwhite.org/foenixmarketplace/
http://vcf.emwhite.org/map/
https://github.com/daschewie/FoenixBasic68k
https://github.com/daschewie/FoenixEdit
https://github.com/dtremblay/c256-tetris
https://github.com/dtremblay/c256-vgm-player
https://github.com/dtremblay/fraggy
https://github.com/econtrerasd/Foenix-Sprite-Editor
https://github.com/econtrerasd/playSong
https://github.com/econtrerasd/VickyGraph
https://github.com/ghackwrench/OpenKERNAL
https://github.com/hth313/Calypsi-Foenix-guide
https://github.com/hth313/petit-fatfs-foenix-jr
https://github.com/noyen1973/C256-Foenix
https://github.com/paulscottrobson/junior-utilities
https://github.com/paulscottrobson/superbasic
https://github.com/Trinity-11/FoenixIDE
https://github.com/vinz6751/FoenixSamples
https://github.com/vinz6751/genxtos

309/2022

Atari Gran Trak 10
Examining Atari’s first driver and the genre that evolved from it

and expensive, and it nearly cost Atari as they slipped
close to bankruptcy (they were reportedly losing $100
per game and operating at a $500K deficit before being
acquired by Warner Communications in mid-1976).

According to internet sources, it took a few iterations to
get the product to work well; remember, this was
presumably the first use of a steering wheel, a gas pedal,
brake pedal, and a four-position stick shift.

This was also an early use of a rudimentary ROM to
house graphics data (for the car and a track layout).
Prior efforts dating back to the famous Computer Space
game used on-board diodes which were expensive and
took up a ridiculous amount of circuit board real estate.

Here are two examples of this early use. Computer
Space 1971 by
Nutting Associates
(on the left) and
Atari’s Space Race
(the followup after
Pong) produced in
1973, below.

For some unknown
reason, designers
opted to fashion
diodes in the shape of
the actual on-screen
object (possibly to
aid in trouble-
shooting should a

pixel/data bit go dark). Good documentation, I suppose.

Footnote on the Space Race example below; the dark pic
on the left contains a prototyping area/peg board,
presumably for ‘editing’ the first sprite. Do you hear
that, Ernesto!? And I thought you invented the concept.

Ah, the roots of Atari’s VCS screen mirroring
scheme; when ‘memory’ was scarce and
expensive, mirroring was leveraged.
Necessity, the mother of invention, indeed.

The graphic to the left was captured from a
YouTube video demonstrating the early Atari
Space Race game, said to be the first “racing”
game. Arcade has come a long way.

The first driving game
Gran Trak 10 is widely acknowledged as the first CRT
based driving game, establishing the genre almost 50
years ago. You can graph a straight line from Atari’s
Gran Trak and Sprint titles to Night Driver and
ultimately to Pole Position (which led the way for non-
Atari titles such as OutRun and Crazy Taxi).

In truth, the Atari lineage bounced back and forth and
around, between overhead, top-down, and ‘first-person’
drivers, many times; who can forget Atari Fire Truck?
That relentless siren is hard to forget!

Gran Trak is said to have been influenced by Nolan
Bushnell’s experience working in electro-mechanical
arcade during college and exposure to Chicago Coin’s
Speedway, specifically.

In this article, we will walk through the history including
aspects of architecture from this influential starting point.
We will close with a prototype idea for a Foenix platform
game (based on actual Gran Trak 10 assets).

Brief History and Highlights of Gran Trak 10
In the early ‘70s, Atari partnered with Cyan Engineering,
located in Grass Valley, California. Cyan became
instrumental in the development of the 2600 (then called
the VCS) and Atari 400/800 8-bit computer architectures;
Larry Emmons (one of Cyan’s founders) is given credit
for creating Gran Trak 10.

Larry Emmons can be seen in this documentary video
recorded in 1982 (transferred from VHS). It’s a little
rough on the eyes. Also, the video quality is poor.
That’s Larry sitting at the roll-top desk @ 1:05. His laid
back demeanor reminds me of actor John C. Reilly, but
with a mustache.

Emmons and Atari found that interfacing physical
controls with solid state electronics was not an easy task;
sourcing components and contracting fabricators is tricky

https://www.youtube.com/watch?v=97DAio1M1xc&t=146s
https://www.youtube.com/watch?v=bfFGrQLuY8s&t=55s
https://www.youtube.com/watch?v=0eBUoY6W8BY

409/2022

Technology - Discreet Logic rules the day
Gran Trak 10 belongs to a distinctive class of arcade
built from discreet logic ICs. In other words, it is not
microprocessor controlled and therefore, has no code or
software of any kind. This title is somewhat unique
since it contains a ROM (of sorts), and was reportedly,
the first to do so. It is also the first to connect a steering
wheel to solid state for the purpose of simulating driving.
From a technical perspective, Gran Trak more closely
resembles a state machine with different sections of
board logic managing ‘state’ of an element of the game.
As a quick example, the steering wheel is ‘wired’ to the
car image ROM select regardless of where the car is on
the screen or what might be going on in an “interrupt
loop”. Not unlike electro-mechanical pinball amusement
or arcade, flip-flops (though solid state) are aplenty,
except in this case, they are packaged on TTL ICs rather
than dual-state relays with physical latching mechs.
If you’ve followed Ben Eater’s tutorial series, you are
probably aware of his “8-bit Computer” project. Across
several hours of video, Ben provides a tutorial to literally
build a microprocessor (or a rather large processor) using
nothing but TTL ICs and wire.
Impressively, Ben implements an ALU (arithmetic logic
units), he reads microcode/data in order to fashion
control-words from ROM, and stores data (RAM). He
also constructs a program counter, and negotiates chip
selects in support his “instruction set”.
Others have done wondrous things with similar design
tenets (discreet logic only) building fully functioning
computers complete with color and graphics. See
Gigatron for once such example.
The point is, Gran Trak 10 is somewhere in the middle
(from a year of release perspective) of a group of games
that did not use CPUs. Most impressive to me is the
video technology that became increasingly complex all
the way up to the pinnacle of discreet logic video arcade
(also a driver); Gremlin/Sega’s Monaco GP. (if you are
ever in Las Vegas, Tim Arnold has one on coin-drop)
There is plenty to be said about the analog sound effects
and the interlaced video modes (2 x 260.5 horizontal
scan lines) used in Gran Trak and others like it. More
stories for another time.

Alternate Track(s)
Gran Trak 10 had but a single track, but some owners
have modded their machines to access the 2nd, hidden
track. The mod requires grounding (or alternatively,
applying +5V) to a pin on one of the quad NAND gates
(a DM7400N adjacent to the track ROM).
The alternate track was leveraged when Gran Trak was
sold as Formula K through Atari’s “Kee Games”
division, but you can have both with this mod. This link
contains all of the graphics data for the track including
the digits for score and time, plus the animated frames of
the car.

Documentation
The Gran Trak documentation may possibly be the best
manual ever written (not counting my Volvo P1800
repair manual set). In all seriousness, typesetting in the
mid-‘70s was an art, especially when detailed diagrams
and pictures were included. Outside of what Steve
Wozniak did with the early Apple products, for one
reason or another, arcade and computer manuals slipped
over the years and are now non-existent.
In the Gran Trak manual, there is a blend of theory of
operation and test/troubleshooting information. Solid
state circuits were relatively new in the ‘60s and ‘70s and
thus, quality control and effects of heat had not yet
reached the levels of reliability that we enjoy today.
Maybe that was the driver (see what I did there?).
But most-most interesting, is the manner in which the
manual explains circuit theory and troubleshooting
procedures that you will never see for a piece of code
that may, at some point, fail (contain a bug or stop
working if a control signal or an actual IC failed).
Remember, even though Space Invaders had an Intel
8080 and ROMs containing code, that didn’t mean it did
not have any other integrated circuits or passive
components. Quite the opposite, the 3 board Space
Invaders set was packed with logic, RAM and other ICs.
Here is example “2-75” of implementation detail from
the Gran Trak manual. This is example #75 of 126.
There are dozens of accompanying diagrams like this
one:

For reference, 193’s are binary up/down counters with ‘clear’
and the 9314 is a quad latch.

Other resources
Ed Fries published an outstanding repair blog, including
dozens of links and numerous citations. He also
interviewed the original Gran Trak engineers.

https://eater.net/8bit
https://gigatron.io/
https://en.wikipedia.org/wiki/Monaco_GP_(video_game)
http://www.pinballmuseum.org
https://edfries.files.wordpress.com/2017/06/gt10_rom_memory_map.pdf
https://www.arcade-museum.com/manuals-videogames/G/GranTrak10.pdf
https://www.robotron-2084.co.uk/manuals/invaders/taito_space_invader_l_shaped_board_schematics.pdf
https://edfries.wordpress.com/2017/06/14/fixing-gran-trak-10/

5

Gran Trak 10 Gameplay
With the exception of braking for turns, what you see is
what you should expect in this game. Gran Trak is novel
because it was the first, and is interesting because of its
place in Atari’s history. It is an extremely difficult game.
If you watch the handful of YouTube videos featuring
this game, you’ll find that owners are not particularly
good at it, so there is great pride in succeeding to beat
your prior score by a point or two in the quest to achieve
the elusive, perfect race.
Driving titles from here:
An incomplete list of popular arcade driving games
released between 1974 and 1986*.

Gran Trak 10 / 20 - Atari Overhead Solid State 1974

Speed Race - Taito Top down vertical scrolling Solid State 1974

Hi-Way - Atari Top down scrolling Solid State 1975

Sprint 2 - Kee Games Overhead Solid State 1976

Night Driver - Atari 1st person Solid State 1976

Sprint 4 - Atari Overhead Solid State 1977

Super Bug - Atari Top down omni scrolling CPU 1977

Super Speed Race - Taito Top down vertical CPU 1977

Sprint 8 - Atari Overhead CPU 1978

Fire Truck - Atari Top down scrolling CPU 1978

Speed Freak - Vectorbeam 1st person CPU 1979

Monaco GP - Gremlin/Sega Top down vertical Solid State 1980

Pro Monaco GP - Sega Top down vertical Solid State 1980

Rally X - Namco Top down omni scrolling CPU 1980

Turbo - Sega 1st person removed CPU 1981

Bump ’n’ Jump - Data East Top down vertical CPU 1982

Pole Position - Namco 1st person removed CPU 1982

Spy Hunter - Bally/Midway Top down vertical CPU 1983

Pole Position II - Namco 1st person removed CPU 1983

*Super Sprint - Atari Overhead CPU 1986

*Out Run - Sega 1st person removed CPU 1986

Gran Trak Foenix - a proposal
This column within a column (in a single column)
proposes a conceptual ‘port’ of Gran Trak for Foenix
platforms.
The intent is to mirror, as closely as possible, the
graphics, audio, and experience of the original game.
Graphics to be based on the original ROM images as
linked on page 4 above including the block score and
time numerals. These will be included in a .SPR file
alongside car and track data. To support (include) the
Junior, a 320 x 240 resolution will be the target.
Audio is TBD. The plan is to leverage the lowest
common denominator of capabilities across the widest
array of platforms. Ideally, this will be an FPGA based
decision. Since the Junior is a work in progress, it is too
early to tell.
Controller support will be limited to keyboard and
joystick to start, but we may be able to integrate a 3rd
party arcade spinner. At least one has a steering wheel
add-on and similar to the original and leverages an
encoding scheme that signals right or left movement
(there is no notion of 12 o’clock or a ‘home’ orientation).
Track selection will be limited to the original Gran Trak
10, but longer term I’d like to include a superset of Gran
Trak 10 (including Formula ‘K’, the Kee Games
derivation), and Gran Trak 20. Ultimately, I would like
to see somebody (you know who you are) develop a
track editor but I have a tactical plan to address this “on
platform”. (See ‘track encoding’)
Extras - I said “model as closely as possible”, but I
would like to include excerpts from the original manual
and promotional flyers within, memory permitting.
A note on track encoding - If ‘tiles’ are a collection of 8
x 8 or 16 x 16 images intended to construct a background
(fixed or scrolling) and if sprites are typically a
collection of 32 x 32 pixel objects intended for movable
objects, what is the best way to store and optimize track
data? Ideally it would be something that we can easily
edit with existing tools without requiring the use of a
Mac or PC to write python code.
I’m thinking of leveraging the Foenix Sprite Editor for
unique 32 x 32 super-tiles, and a simple map file that
dictates how super-tiles are arranged; finally an
algorithm to unpack them such that the pylon / cone
paradigm is preserved and car detection accomplished.
Timeline. Looking to have a working demo complete by
mid-holiday break. As mentioned in “next for …” on pg.
28 below, after issue #4, I’ll be moving to a quarterly
format in order to allow myself more time for
development and design and I’m hopeful that by the one-
year mark of this publication that we have enough
reader/developer contributions to keep this journal alive.
Feedback? - I’d be interested in hearing your thoughts
and ideas. You know where to find me.

* despite 1986 being beyond the reach of Warner Communications Atari
(1985), I thought it important to highlight the Super Sprint title because it
was a relative of the Atari Gran Trak / Sprint lineage. Also, Atari’s System 2
was under development at the time of the acquisition by Namco (see the
Marble Madness/System 1/System 2 section below for more on this).

Sega Out Run, also released in ’86, was a Pole Position on steroids and led
the way to dozens of games like it across home and arcade platforms. The
post crash period still produced games, but abandoned the creativity of the
prior period. For a fair 15 years, it felt as if every game was an also ran
driving game, a fighting game, or a dance-dance whack-a-mole and
Chuck-e-Cheese redemption game. Perhaps that was Nolan and Cyan’s
secret plan? (The same arm that produced Gran Trak developed the
Chuck-e-Cheese robotics. Read about it here.)

09/2022

https://www.fastcompany.com/40425172/robots-pizza-and-magic-the-chuck-e-cheese-origin-story

“Space Invaders, Asteroids, or Pacman?”
Ask an avid collector, vintage gamer, or retro aficionado,
and you’ll get an earful. There is ‘first’, most innovative,
popular, cherished or rare; so many ways to measure and
hundreds of great games released across just a few years;
better clear your calendar for this one.
Slowly at first, then in rapid succession, Arcade games
were released, gobbled up by operators, placed on
location and played, encompassing tech innovation that
was being developed in parallel. The result is a living
body of history that many of us revel in.
Emulations, emulated emulators, battery powered
handhelds, 60 in 1 JAMMA boards, cabinets, console
Arcade Treasure collections, UltraCade, and countless
tributes continue to surface; but let’s talk about the
technology, the history, and give a think about what
might be possible on Foenix platforms. Facing facts, we
didn't invest in ‘home’ computing to calculate small
business payroll and catalog recipes, even though ‘home’
computing started that way.

In the beginning
The first games focused on sport, various types of racing,
and warfare, of course. This is where the ‘60s and early
‘70s electro-mechanical (EM) arcade left off. Browsing
the Sega EM titles across this period included:

• Periscope (submarine shooter)
• Moto Champ (motocycle)
• Sand Buggy (driving)
• Soccer (also sold as ‘Mini-Futbol’)

But a closer look at the Sega catalog (expertly curated at
this tribute site) details a few titles (about 5%) in the
‘other’ category, specifically:

• Lunar Rescue (space themed)
• Love Tester (umm…)
• Jumbo (elephant/circus theme skill game)

… and in 1972, “Invaders”
The brochure and cabinet
art conveyed the terror of
“disc-like vehicles …
attacking from
unpredictable directions”.
The narrative continued:
 “The ‘Defender’ fires
from an instrument that is
operated by both hands,
and when the target is
thought to be in sight, a ray
beam projectile is released
by pushing a button”. I'd
pay $0.25 for that!

Classic Arcade
A look at the state of early gaming and an examination of five diverse examples

Taito Japan releases “Space Invaders”
6 years later, everything changed. Wikipedia suggests
that Space Invaders designer Tomohiro Nishikado drew
inspiration from EM target shooting games released in
North America in addition to sci-fi narratives including
“The War of the Worlds” and the Japanese anime “Space
Battleship Yamato” among others.
In the U.S., Midway Games secured a license to
distribute Space Invaders, bringing cabinets to every
take-out restaurant, bowling alley, and movie theatre in
my corner of North America; Taito is said to have sold
well over 100,000 units in its first year.
Shigeru Miyamoto, creator of Nintendo Mario, Donkey
Kong, and ‘The Legend of Zelda’ and Eugene Jarvis
(Williams Electronics’Defender and Robotron 2084)
both cite Space Invaders as an early influence.
Video games slowly displaced Pinball machines, the
latter of which occupied at least twice the floor
footprint, required routine (if not frequent) maintenance,
and had far longer playing times per coin-drop.
For operators, distributors, and locations, the video game
business model was many times more profitable.
Based on the Intel 8080, Space Invaders had a bit
mapped 256 x 224 pixel 13” CRT, discreet 555 timer and
transistor based sound effects complemented by the TI
SN76477 sound IC, and simple 3 button controls.
The atonal ‘soundtrack’ consisted of four discreet tones
which would step downward in frequency, then repeated
in coordination with alien movement at a tempo that
increased as the aliens advanced.
Periodically, a UFO / flying saucer would appear,
complete with sound generated by the Texas Instruments
IC. No doubt, this had an effect on the players level of
urgency (and blood pressure). Space Invaders was, after
all, an all-out assault against humanity.
The 2 MHz. Intel processor was busy and received an

assist from a set of hardware
shift registers (the 8080
instruction set did not have
such instructions). This was
instrumental in shifting the
now beloved sprites, pixel-by-
pixel as the aliens moved
horizontally. The cabinet
monitor was rotated to portrait
and reflected 90’ from a
mirror, requiring a reverse
image on the black and white
monitor. Colored cellophane
affixed to the mirror provided
color filtered light. Space
Invaders was a smash hit.

609/2022

see pg. 13 for
a photo

gallery of this
era of gaming

https://segaretro.org/Category:Electro-mechanical_arcade_games
https://www.youtube.com/watch?v=s8TVpD5yzE4

“Back in ’82”
If you played these games when they were new, you can
probably rattle off your top 10, or at least a quick list
that comes to mind. If you didn’t have ‘access’ to the
‘80s or to the games released during the decade, you
might find it difficult playing catch up now; there are
thousands of titles.
Storied history aside, the list of games produced by year
yields a field so far and wide, you’d need to take a year
sabbatical to get through 1/2 of it. It’s difficult to tell at
this point, but internet sites that catalog such things
have numbers upwards of 2,500 in just four or five
years of production and for every top title, there were
50 horrible games produced. Operators of this era were
purchasing games by the dozen, just to see what took.
I have a fond appreciation for the four Williams games
released in 1981 and 1982, specifically, Joust,
Robotron: 2084, Defender, and Stargate, in that order.
I’ve also got a thing for Atari’s ‘modern’ games,
namely: Marble Madness, Paperboy, Gauntlet, and
Championship Sprint.
And who doesn’t have time for Mario Brothers, Donkey
Kong, Donkey Kong Junior, and even Popeye?
I almost forgot Missile Command, Centipede,
Excitebike, Tempest, Time Pilot, Track and Field, 1942,
Kung Fu Master, all of the Pacman variants, and more.
So I’ll draw the line here and discuss 3 from this
month’s puzzle and throw in two which were not and
we will spend a page per title starting with a favorite.
1. Crazy Climber (1980) - an otherwise unknown

company named Nichibutsu produced vertical
scrolling perfection that was ahead of its time.

2. Galaga (1981) - successor of Galaxian; to me, this
title is the ultimate stationary shooter; we can
debate vs. Gyruss or Satan's Hollow, but considering
the year, this game remains unmatched.

3. Zaxxon (1982) - Sega came out of nowhere with
this diagonal scrolling 3D simulation, expertly done.

4. Mario Bros. (1983) - Primitive by design but
challenging and the last of the Arcade Mario
franchise titles; this two player game could be
played cooperatively or… “whoops…”, not !!

5. Marble Madness (1984) - Took Zaxxon’s never-
been-done 3D perspective to the next level with
cartoon whimsey, an amazing soundtrack, and a user
interface that demanded physicality and precision.

The remainder of this article will walk through the killer
feature or draw that to me, warrants their inclusion on
my by-year list of five; I’ll also discuss aspects of the
hardware that I found interesting, innovative, or unique,
and where applicable, predict the likelihood our seeing
a port or ‘inspired by’ on a Foenix platform. Along the
way, I’ll provide some web sites and videos that I found
interesting as I researched content for this article.

1980 - Crazy Climber by Nichibutsu
It’s hard to believe that between 1979 and 1980, game
narratives changed from space and war themed games
where the objective was to pilot a ship and “shoot
stuff”, to a top selling franchise based on navigating a
faceless yellow circle on a dot-eating mission while
being chased by Ronald McDonald fry-guy baddies on-
a-budget.
But six months after the Namco release of Pacman, an
unheard-of Japanese company released a concept game
called “Crazy Climber”.
The mission: Climb the building so a helicopter can
bring you back to the ground so you can… wait-for-it…
climb yet another building.
Along the way, people throw stuff at you; all sorts of
stuff; chairs, flower-pots, weight lifting equipment, steel
beams, oh… then there is the bird, King Kong, part of
an upright piano, and more.
It’s extremely challenging, very colorful, and nicely
animated. And like many Japanese games to come, the
soundtrack leveraged state of the art audio circuitry with
sampled speech calls thrown in. It felt alive.
The controls consisted of two joysticks, one
representing each hand, but had no left/right return to
center. Instead, you had to switch between frenetic
alternating hand climbing, and delicately shifting your
hands from ever changing grabbing surfaces, away from
closing windows. Residents of the buildings were not
neighborly.

Crazy Climber - Building #4, annotated

Crazy Climber was a massive work of assembly
language (> 13,000 lines) and sprite/tile data. The full
source and much of the graphics and other detail (see
next page) is expertly mapped out by Rich McFerron on
Chris Cantrell's site here.
(You’ll find other goodies on Chris’s site as well,
including a few magazine articles that he had published
in CoCo / TRS-80 journals in the early ‘80s).
Foenix port feasibility = “High”. I have a high level
of confidence that a faithful port is possible, perhaps not
the full game (because of the massive amount of work),
but a playable game or demo based on the original
concept.

709/2022

Building
level (4th, in

this case)

Our hero,
mid-climb

Adversary,
dropping

flower pot !

Upcoming
windows, closing

Building Map;
white dot

representing the
climber

https://computerarcheology.com/Arcade/CrazyClimber/

Quick look at Crazy Climber Sprite Graphics (two examples)
The following represents a few examples of the use of sprites. Let’s focus on the Helicopter, and the “Evil Bird”.
Contrary to end-of-level ‘bosses’, Crazy Climber greets the player with a hovering helicopter and the opportunity to
collect an earned bonus, hear an uplifting song, and celebrate the achievement. Fiddle about for too long and the ‘copter
will leave with you stranded.
Sixty-four 8 x 8 pixel sprites make up the Helicopter body (assembled below, right) and all possible positions of the main
blade and tail rotor which is animated as the ‘coper arrives, hovers, and departs (with or without you).
Likewise, the “Evil bird” is also composed of 64 sprites but rather than including animation in a specific region of the
“Big” sprite, each frame of animation (4 shown out of the 6 frames) is unique.

“Evil bird”: “Helicopter”:

;===
; Handle the evil bird
;
; This routine checks to see if the bird is spawned. Once it is, the bird music
; begins to play and the bird is animated and moved. Finally, a routine is
; called that checks services the bird poop.
;===
ISR_JUMP3_BIRD:
 LD A,(GP_82AF) ; 339A 3AAF82 :.. Get counter
 AND A ; 339D A7 . Is value zero?
 JR NZ,Lb642 ; 339E 201D Y Nope, go here

 LD A,(FLOOR_GROUP_IDX) ; 33A0 3ADC80 :.. Get the current building floor group
 AND $03 ; 33A3 E603 ..
 CP $03 ; 33A5 FE03 .. Is the FLOOR_GROUP_IDX != 3?
 JR NZ,Lb643 ; 33A7 2006 . Yes, go here

 LD A,$FF ; 33A9 3EFF >. FLOOR_GROUP_IDX is 3
 LD ($82B8),A ; 33AB 32B882 2.} $82B8 = $FF
 RET ; 33AE C9 .

Lb643: CP $00 ; 33AF FE00 .D Is FLOOR_GROUP_IDX != 0?
 JR NZ,Lb644 ; 33B1 2006 . Yes, go here

; We found the bird!
 LD BC,$406 ; 33B3 010604 ... Play Bird Music
 CALL LOAD_SOUND_DATA ; 33B6 CDBB11 ..A

Lb644: CALL INIT_BIRD_GFX ; 33B9 CDE033 ..2 Initialize the bird graphics
 RET ; 33BC C9 .

Lb642: LD A,(FLOOR_GROUP_IDX) ; 33BD 3ADC80 :.. Get the current building floor group
 AND $03 ; 33C0 E603 .S
 CP $03 ; 33C2 FE03 .S Is FLOOR_GROUP_IDX= 3
 JR Z,Lb646 ; 33C4 2813 (. Yes, go here

 LD A,(GP_82AF) ; 33C6 3AAF82 :.. Get counter value
 CP $09 ; 33C9 FE09 .. Is counter = 9?
 JR NZ,Lb646 ; 33CB 300C 0\ Nope, go here

 BIT 0,A ; 33CD CB47 .G Is counter even?
 CALL Z,CHECK_BIRD_POOP ; 33CF CCEA35 ..q Yes, check bird poop

 CALL MOVE_BIRD1 ; 33D2 CD4534 .P%
 CALL BIRD_ANIMATION ; 33D5 CD0435 .Tq Animate the bird
 RET ; 33D8 C9 .

Lb646: CALL BIRD_ANIMATION ; 33D9 CD0435 .Tq Animate the bird
 CALL MOVE_BIRD2 ; 33DC CDBA34 ..%
 RET ; 33DF C9 . End ISR_JUMP3_BIRD

The following code snippet is associated with bird
‘action’. Note the clarity of code formatting and
comments. Despite not being 65xx family code, this
(for me) is easy to follow. Click here for the source.

Attention to detail

Scanning the hex
identifiers (left), you
may notice that no
two cells are
repeated. Despite
‘repeating’ blank
cells above, devs
spared no expense
in animating to
ensure convincing
realism.

809/2022

Quick listen to Crazy Climber Audio
The General Instruments AY-3-8910 is driven by (at
least) 1,400 lines of assembly language located from
$4000 - $4FFF (4K assembled). This memory space
contains init and register drivers but also, data streams
embedded in “.db” statements within the source.
In addition to sound effects and a few musical jingles,
there are a number of voice calls urging the player to
“go for it!”, exclaiming “yeah!”, and screaming
“ouch!” upon being struck by falling objects. And of
course, the “oh nooooooo…!!!” when the player is
knocked to the ground. Click here for samples.

Amusing (?) excerpt from pg. 4 of the service guide

Final thoughts and a note on gameplay
Considering it was 1980, the quality of animation and
audio was quite high. But this game has also been
characterized as having a “steep learning curve”.
One of the internet-based fan sites characterizes a first
time user as likely to be seen:
“… shaking the joysticks every which way and unable
to figure out how to achieve even the most basic
movements.” This is part of the appeal. Crazy
Climber was a great game, and not well known.

https://www.soundboard.com/sb/Crazy_Climber_clips
https://archive.org/details/arcademanual_crazy_climber/page/n5/mode/2up
https://computerarcheology.com/Arcade/CrazyClimber/cclimber.asm

repurposed the ‘intermission’ concept from Pacman,
extending it to a playable skill / challenge stage where
the player could earn points without risk of losing a life.
They also added a tractor-beam capture/docking feature
that allowed the player to double-up (with some risk) and
borrowed the progressive scoring feature from Galaxian,
awarding extra points for defeating all members of a
sortie attacking in formation.
(Here is a fascinating interview with Shigeru Yokoyama,
Namco designer; as interesting as it is revealing.)
Namco, wary of piracy and clones, included a number of
custom chips across generations of their boards, but they
didn’t invent the technique (look for an article in an
upcoming issue for more on copy protection). What
Namco did do is create custom ICs that to this day, are
still challenging experienced engineers.
YouTuber “ajcrm125” documented his efforts to clone a
Pole Position IC using Verilog (the same software that
Stefany has leverages for FPGA development) to model
and then mimic the Namco chip. Worth a watch!
Sprite movement
We mentioned Galaga’s sprite engine in prior discussion.
From a multiprocessing perspective, there is something
special about what Namco pulled off (again, relative to
early days of arcade). Using 3 x Z80s was surely a help,
but that aside, the ability to run not only 64 sprites, but
stationary animation flawlessly, was the game’s
crowning achievement. Think about the trajectory of the
bees and how they run tight but slightly different paths
looping down towards the player in coordination (see
yellow dashed line to the left) and then join the ranks
above. Sometimes, however, one or two would peel off
and adopt an angry dive-bombing trajectory (annotated
in red). Namco took no shortcuts.
Game Play
What one thing made Galaga great? Everything!
Namco did what everybody was doing, attempting to
capture the attention of players, baiting them in with a
given formula, but then hooking them for life, with
graphics, audio, precision, and enough variety to build a
following. It was the Pacman formula all over again.
Audio Soundtrack
Galaga employed the same audio hardware shared by
DigDug and Pacman whose core was a 4-bit Waveform
Generator running at the system clock of 3.1 MHz;
primary tones were square waves but had a smooth tonal
quality to them. Other chip features were used for sound
effects.
Three voices yielded such lovely, if not regal overtures.
Learn to play the theme song for yourself here or if you
are a super-fan, preview then buy the music on Apple
Music here.
Foenix port feasibility = “Moderate”. Can one 14
MHz. CPU match 3x Z80s, running at a fraction of the
clock speed? Stefany says ‘yes’.

1981 - Galaga by Namco
Sixteen months following the release of Pacman, Namco
would produce a game that was possibly their 2nd most
successful title, “Galaga”. With deference to DigDug
and Pole Position (both Namco titles licensed by Atari),
Galaga was a top earner and one of the few games to
approach the success of Pacman, though a distant 2nd.
Galaga succeeded Galaxian, but the leap in game play
and refinement between the two titles felt like 3-4 years
of evolution, not just two.
The unfair comparison leaves Galaxian feeling like a
sophomoric effort; quirky and uninspiring, but there was
no denying, it was a first.
With Taito’s Space Invaders lead, many games were
produced using the “stationary shooter” formula: a
single, player controlled ship at the bottom of the screen
moving along the x-axis (more or less); aliens
descending against a backdrop of stars, dropping or
shooting projectiles and swarming in order to create
havoc and mayhem.
Phoenix, Moon
Cresta, and Gorf (the
latter of which,
strangely, had Space
Invaders and
Galaxian within) all
used this formula.
Galaxian was the
first game with full
color sprites but to
some extent, was
developed in haste;
What had changed at
the turn of the
decade was advances
in computer
technology and
development
practices.
Galaxian and Galaga used same Zilog (Z80) CPU and
both ran at 3.1 MHz. But Galaga had three of them (and
thus could support 64 ‘player/enemy’ sprites). One CPU
ran the main game logic and coordinated master control
over the other two; a second Z80 managed graphics and
enemy movement, and finally, a third, managed audio.
Galaxian only had 8 sprites and group of small missile
objects driven by the sole Z80 CPU.
The Galaxian player might not have realized it, but the 8
sprite limitation required developers to leverage a
combination of stationary bit shifting ‘tiles’ (as Space
Invaders did) for non-moving enemies, and one of the 8
sprites for an enemy once in motion.
Galaxian is a difficult and frustrating game but loved by
many (not me). On the other hand, Galaga was a gem in
every regard. The animation, object movement, music
and gameplay were all perfectly coordinated and Namco

909/2022

Galaga stage 5 - (bees flight path
annotated in yellow and red)

https://shmuplations.com/galaga/
https://www.youtube.com/watch?v=b8pRN_FTkNQ
https://www.youtube.com/watch?v=PxnJZ3Acieo
https://music.apple.com/us/album/galaga/330762567

From a technology perspective, Sega leveraged the same
Z80 CPU running at 3 MHz. as others but they certainly
made the most of it. It also had a massive pile of
components to create at least a dozen sound effects from
discreet electronics, all CPU switched through an 8255
peripheral interface IC. See the left side of the schematic
on pg. 134 here for this detail.
A quick word on Graphics capabilities
For as beautiful as Zaxxon was graphically, it only
supported a 256 x 224 screen resolution, had a 9 bit color
palette (512), but impressive capabilities otherwise:
• Tile-map planes: 2 layers (foreground, background),

8×8 tiles, 4 or 8 colors per tile, tile flipping, vertical/
horizontal/diagonal scrolling, isometric perspective

• Sprites: 4 or 8 colors per sprite, flipping & shadows
• Sprite sizes: 8 and 32 heights, widths of 8, 16 and 32

pixels
• Line buffer: 256 sprite pixels/texels per scanline, 8

(32-width) to 32 (8-width) sprites per scanline

All in all, the Zaxxon technology was an engineering
marvel for Sega, but with the exception of two or three
titles mentioned, it was bespoke to the extent that it was
not considered a “platform".
Sega “System 1” would later be released and was
leveraged across more than a dozen Sega games. Not to
be confused with Atari’s 1985 vintage “System 1” which
was used for Marble Madness, Road Runner (meep-
beep), RoadBlasters. Oh, and not to be confused with
Gottlieb’s “System 1” solid-state pinball board system,
used across a dozen machines (I own two of these; a
story for another time).

Game Play - a pre flight-simulator simulator
There is something about flying a plane and needing to
pull back on the yoke with all of your might to gain
enough altitude to NOT crash into ‘that’ mountain,
building, or in this case, an electrified force field wall.
Of course, I’ve never flown an airplane, let alone, a
rocket powered space jet. But if Zaxxon is any
indication of difficulty, well… it's difficult. Banking,
being wary of your altitude without ground perspective,
avoiding projectiles launched from underground, and
being shot at from the side adds to the difficulty.
Between bases, the free flight portion of each game level
challenged the player with numerous enemy craft flying
at varied elevations. As much as it was a relief to escape
the fortress of death, free flight was also harrowing.
At the time of Zaxxon’s release, a small company named
SubLogic had already been pushing an 8-bit micro Flight
Simulator for the Apple II (later sold by Microsoft). The
first incarnation of FS featured rudimentary line drawn
scenery from a first person point of view. The tech was
nowhere near being able to depict a smooth animated
view of aircraft from a relative vantage point five
hundred feet away, but Zaxxon did. Of course, it was all
fun and games, but an impressive technical feat.

1982 - Zaxxon by Sega
Zaxxon was one of the most popular arcade machines in
1982, but only for one month. Depending on continent,
Zaxxon’s short lived ‘day in the sun’ was outshined on
both ends of its single month reign by one of the most
beloved games of all time; Namco’s Ms. Pacman. It was
hardly fair considering the head start that the original
Pacman had.
But Zaxxon rewrote the book on the space shooter genre
adding a 3rd dimension and a visually reorientated
perspective to a crowded field of video games that was
just starting to dabble in perspective and shadows.
Sprites were not even operating in multiple fields of
depth or layers in any useful way through 1981.
The wow factor of 3D and multi-dimensional scrolling
was amplified by Zaxxon’s icy blue color scheme and
bitmap detail that, at the time, felt like perfection in
every regard. (however, the fact that it shipped in a
woodgrain cabinet /see pic/ was just plain weird)

Zaxxon was a challenging game to play as well,
especially at that moment in time. Experienced players
were used to fixed-shooter x-axis-only movement, or
two-axis limited motion, but they were not ready for this.
Each level began with an attack on the enemy base,
continued through an open air space, and concluded with
a more difficult fortress and an end-of-level boss.
Another first for a video game was the famous primetime
TV commercial. Sega (owned by Paramount Pictures at
the time) reportedly paid $150,000 for a highly-produced
30-second TV commercial. Ports to every platform
imaginable were popping up including the monochrome
TRS-80, the TRS-80 CoCo, Atari 2600, ColecoVision,
Coleco Adam, and Japanese platforms, just to name a
few, and there was even official Zaxxon merchandise
like this Milton Bradley board game.
Sega reused the technology and graphics engine on
Super Zaxxon and for the game Congo-Bongo a year
later, but this level of visual gameplay perspective would
otherwise not be improved upon in such a meaningful
way until Marble Madness was released by Atari in
1985.

1009/2022

https://archive.org/details/ArcadeGameManualZaxxon/page/n133/mode/2up
https://www.youtube.com/watch?v=Z0bxTjxqwxg
https://boardgamegeek.com/image/509200/zaxxon

Technology, what technology?
Similar to other arcade companies of the era, Nintendo
was iterating their CPU board-set from game-to-game
and as late as 1983, still had not established a ‘System’.
This would change with the advent of the Nintendo ‘Uni’
and ‘VS.’ platforms, and ultimately the ‘PlayChoice 10'.
However, over four years, Nintendo used the same Z80
based board, the “Donkey Kong Board”, for four games
(one per year). The first, a little known stationary
shooter called Radar Scope looks interesting in YouTube
videos, but didn’t appear to get much love.
Donkey Kong, Donkey Kong Jr., and Donkey Kong 3
were the other three titles that ran on this board. (counts
of machines produced vary wildly.)
Nintendo had a different board for the 1982 Popeye
game (one of their few licensed titles). Sky Skipper
(1981), released in Japan, also used this board. See this
YouTube video. Sky Skipper was recently added to the
Nintendo Switch Store. It’s a rather rough game but you
can see the early rudiments which would find their way
into several games including the tile scrolling that would
eventually become a platform staple on the NES system.

Mario Bros. screen resolution of 256 x 224 pixels was
identical to the Donkey Kong and Junior games that
were released prior, but the color palette appears wider.
Again, there is little written about this hardware.
Nintendo’s success was never about unique and fancy
cabinets or flashy controls. They thrived on gameplay,
characters, and later, storyline; the technology was never
that important.
What is certain is the fact that Atari, Namco, Williams
(including the Bally Pinball division), and scores of other
arcade design and manufacturing companies are long
since gone, and Nintendo had enough focus, discipline
and vision to know when to get out and to somehow, find
a way to parley a handful of beloved characters into an
overwhelmingly successful console (the NES), titles for
it, and then a series of handhelds, the SuperNES, the
GameCube, Wii, Switch, and the merch that goes with it.
Foenix port feasibility = “High”. Easy lift, given the
time and perseverance to get it done.

1983 - Mario Bros. by Nintendo
Shigeru Miyamoto is widely credited for being the
creative force behind the arcade version of Donkey Kong
but he subsequently developed the Mario franchise,
bringing Super Mario Bros. into homes via Famicon
(Japan) and the Nintendo Entertainment System (NES)
Console in the rest of the world.
Prior to the NES introduction (1985), Nintendo released
the arcade game Mario Bros. It followed Donkey Kong
Junior and was the 3rd game in the series; but ‘Bros.’
was not a smash hit. What it did do, was to put Mario
back in the drivers seat, and introduced a new character,
his brother Luigi, and cooperative play.

Gameplay and Nintendo Gaming in the ‘80s
Nintendo was doing something unique during this
period. After an absolutely dreadful start at arcade in the
late ‘70s, they had started to standardize the feel and
level of graphics and audio quality that carried across the
small quantity of games produced. They also resisted the
temptation to use anything but a 4-direction joystick with
a single button, and had used the same cabinet across all
games through Punchout.
The Mario character attributes of the original came to
Mario Bros. with familiar running and jumping skills;
but they were expanded upon graphically to make the
animation and game play more interesting. Making
contact with a flipped over turtle or lobster would trigger
a kicking motion; running in one direction then opting to
stop or change direction would cause your player to skid
briefly (or slide uncontrollably if the surface was frozen);
most significantly, jumping was transformed into a
power move whereby contact with another object would
flip it over, nudge it, or used to collect points.
This new ability could be also be used to trigger a new
on-screen feature, the “POW”. These capabilities,
though still controlled via a single jump button, would
further evolve and become key in the release of Super
Mario Bros. on the NES and in other titles. It was a new
dimension of fun derived from the same old controls.
Oddly, the next series game, Donkey Kong 3, abandoned
Mario and Luigi. Instead, Nintendo introduced an
exterminator named “Stanley the Bugman”. Huh?

Nintendo must have seen the beginning of the end.
Following the release of Donkey Kong 3, they would
only produce Punch Out, Super Punch Out and an
absolutely dreadful arcade game called Arm Wrestling.
They had quietly been focusing the majority of their
efforts on developing and then repackaging the Famicon
system into the NES for U.S. and European markets, an
investment that would yield unimaginable value and
transform Nintendo into an entertainment powerhouse.

1109/2022

https://www.youtube.com/watch?v=5kbliYx51ok
https://www.youtube.com/watch?v=5kbliYx51ok
https://www.youtube.com/watch?v=xp6xv7xkqtw&t=519s
https://www.nintendo.com/store/products/arcade-archives-sky-skipper-switch/

monolithic board design, leveraging the CPU, graphics,
and audio technology of System 1. This is what Ed
Logg’s famous Gauntlet ran on. It was still expensive.
In parallel, System 2 was in the works and Atari would
go on to produce a concept which was similar to System
1, except based on the unheard of DEC T11 CPU.
(ancestor of the DEC Alpha chip) System 2 ran Paper
Boy, 720’, Super Sprint a few other titles.

Oh, the game
It was amazing. Otherworldly. Mark Cerny is said to
have been influenced by MC Escher and was fascinated
with 3D technology. (see link* below for a great video)
The most engaging aspect of the game (to me) was the
way the music and overall experience was woven into
the visuals. Little did we know (at the time) that the
resolution was ‘only’ 336 x 240 but the color palette was
large (256 colors defined out of total available of 1024).

The end
In mid-1984, Warner sold the home computing and
electronics division of Atari to Jack Tramiel for $50 (yes,
fifty dollars) and $240 Million of promissory notes and
stock, giving Warner a 32% stake in the company.
Warner also sold the Arcade division to Namco in 1985.
And just like that, Atari (this incarnation of Atari) ended
where it started. With a driving game. Of course, the
name ‘Atari’ would live on and Arcade eked onwards;
but it was never the same.

1984 - Marble Madness by Atari
Marble Madness is similar to Crazy Climber in many
ways. It has a control scheme that looks familiar enough
but is more difficult than it looks; it was ahead of its time
relative to competitors, and you either loved it or you
walked right past it.
But Marble Madness is different than Crazy Climber
because it was produced at the end (of the end) of the
arcade market crash. You just didn't see games like this
anymore; they cost too much to produce and did not sell.
There is something else about this title that is not very
well known; it was developed on the iconic Digital
Equipment Corporation (DEC) PDP11/780 mini-
computer (the 1 MIPS reference platform), it was the
first at Atari to have been developed in the ‘C’ language,
and did so on a relatively new microprocessor (the
Motorola 68010). It also was the first title released on
the Atari “System 1” platform, the first to use true stereo,
and to do so using the Yamaha YM2151 (OPM).

About System ‘x’
Atari developed the System 1 concept to allow cabinet
conversions from title to title. The thought was to have a
common main board and ‘cartridges’. But as it turned
out, the cartridge was nothing more than yet another
gigantic board containing dozens of ROMs.

With graphics, audio, and gameplay improving, the need
for more computing power was evident and this was
Atari’s answer.
Meanwhile, across the Pacific,
Nintendo was working on a
similar approach but at small
scale; with ROMs first, then
actual cartridges (PlayChoice
10), but with much simpler
games and lower tech,
Nintendo's vision would pay
dividends for years to come.
On the right is a pic of what
Nintendo was producing in
1984-1985. Nintendo VS.
hosted two sets of ROMs (2
games) at a fraction of the cost.
Of course, following System 1,
Atari moved back to a

1209/2022

The mighty
MC68010

(dwarfed by this
large 4 layer

board)

“Nintendo VS”. - approx.
to scale w/ the Atari

System 1 board above

Super Mario Bros. (right)
unpopulated ROM sockets

for a 2nd game (left)

Super Sprint via Namco / Midway

The end (’85’)
Gran Trak 10

The beginning (’74’)* More from Mark Cerny, recorded at GDC 2011

“Cartridge” aka,
another massive

circuit board
populated with
ROMs galore

https://www.gdcvault.com/play/1023366/Classic-Game-Postmortem-Ms-Pac

Sega Air Attack (’72)

Grad National (’71)

Drive Mobile (’68)

Lunar Rescue (’73)Moto Champ (’73)

Moto Polo (’68)

Periscope (’66)

(SEGA’s first title)

Rifleman (’67)

Sand Buggy (’71)

1309/2022

Gun Fight (’69)

Arcade before Arcade
A visual tour of a portion of Sega’s Electro-mechanical lineup from the ‘60s and ‘70s

(Sourced from SegaRetro.org, an outstanding resource; and specifically this page)

Also, SegaDriven.com put together a nice tribute to many of these games in this video

http://SegaRetro.org
https://segaretro.org/Category:Electro-mechanical_arcade_games
http://SegaDriven.com
https://www.youtube.com/watch?v=rtYKJKnLVD4

Pacman
A quick look at one aspect of the original design plus a Foenix Ms. Pacman preview

Q&A with the developer of a working demo for C256 platforms

1409/2022

Caught, not caught - As explained in the Pacman
Dossier, Pacman gains speed when the player actuates a
turn prior to arriving at an intersection.
Ghosts on the other hand, make right
angle turns anytime they turn corners.
Pacman also changes his speed (as do
monsters) depending on level, whether
eating a dot or not. This give and take
presents opportunities to escape
monsters grasp (usually Blinky), and
at times, you appear to be caught, but
somehow just manage to pull away.
This occurs because the two objects
(Pacman and Blinky) do not yet
occupy the same coarse tile location
even though they are clearly overlapping by a few pixels
on the screen.
The second (variable catch) is
also related to the way that
Monsters and Pacman occupy
positions. It occurs when you’ve
actually been caught by a
monster (or have collided with
one), but the amount of contact
varies. The graphic below shows
two examples of this (each screenshot was taken
immediately after capture). On the left, Blinky, moving
from left-to-right has just about crossed paths with
Pacman and in fact has already focused his eyes
downward (was about to make the turn). In the 2nd
example, Pinky caught Pacman as he was about to
transition to a turn to the right; if he had 1 more pixel
lead, he might have survived!
Finally, there is the pass-through; which occurs when
Pacman and a monster are approaching each other and
happen to cross coarse boundaries outside of the 1/60 of
a second frame interrupt where collisions are checked.

Patterns and Strategy
I first played Pacman in late 1980/early 1981; it was on a
cabaret machine in the snack bar of a Modell’s
department store in New York. I recall watching older
kids run specific patterns that they either made up,
learned from each other, or appropriated from books.
At the time, there wasn’t much thought invested in
studying the behavior of the monsters or developing a
strategy; for me it was all about trying to remember what
worked the last time, or just winging it. But many years
later, there have been online guides published that map
algorithms of the original code. They are fascinating to
read whether you are a developer or just love arcade
games. Here are two:
This link will bring you to an interesting guide of
patterns; it also discusses variations, and other tips.

How did they do that?
How did Namco pull off such a masterful arcade
experience given the computer technology available in
1979 into 1980?
Pacman was an early Zilog Z80 CPU title, but the Z80
processor was by no means new. Released in 1975, it
had been used on everything from late ‘70s CP/M
machines, the 1977 TRS-80 Model 1, dedicated video
terminals from Zenith/Heathkit, and even early gaming
consoles such as the Bally Astrocade (1978).
Pacman’s clock ran at 3.072 MHz., which was
considered fast when compared to the 1.934 MHz. clock
of the prior generation video games (such as Carnival by
Gremlin / Sega). And while that may sound fast (versus
the 1 MHz. 6502 many of us are accustomed to), it’s not.
The Z80 had many advantages over the MOS CPU but
common opcodes took 2x or 3x more clock cycles to
complete the same task; so the speed diff was negligible.
What Pacman did have*, was help from proprietary
hardware based sprites (the platform supported 8 at 16 x
16 pixels) and 3 channel audio; but what Pacman really
had was clever developers that quickly surmised that the
224 x 288 bit mapped screen was ‘too’ hi-res to be
managed on a pixel-by-pixel basis. And without the
utility of collision interrupts (which would be common
later), game logic had to correlate telemetry between
Pacman and the Monsters efficiently in order to preserve
gameplay and leave cycles for other important work. It
also had to do this reliably, and you’re about to see (or
perhaps already know) that this was a challenge.
The method leveraged
divided the navigable portion
of the playfield into a
‘coarse’ grid of locations
which are 8 pixels apart (x
and y). Pacman and his
adversaries traverse the maze
smoothly (pixel by pixel) but
collisions are checked at
1/60th of a second intervals,
and only by comparing the
location of Pacman and any
ghosts in proximity against
the 298 odd tiles where a
collision may possibly occur
(far less work than having to
calculate a field across 64,512
pixels).

Oddities
Because of this scheme, two of three gameplay collision
anomalies have been experienced by many of us, and the
third (the “pass-through”) is legendary, but rarely seen.

Blinky occupies the
same location while

moving smoothly
across ~2 full tiles

Movable objects may only
exist on one of the grey

‘navigable’ tiles (298 of them)
Image from the Pacman Dossier

* see this link for Alessandro Scotti’s excellent hardware
capability overview

https://www.walkofmind.com/programming/pie/hardware.htm
https://www.classicgaming.cc/classics/pac-man/play-guide

1509/2022

And the end-all/be-all is the Pacman Dossier, which was
invaluable in writing some of this article. I won’t go into
detail on how the monster behavior is managed, but urge
you to have a look. It was written and/or compiled by
Jamey Pittman (a Twin Galaxies registered champion)
and is outstanding work. Jamey also plays guitar!

(A disassembled Pacman source can be browsed here.)

Ms. Pacman, coming to a Foenix C256 near you
Those following the Foenix Discord channel may have
seen a work in progress port of Ms. Pacman for 65816
platforms. It is currently a playable demo, graphically
accurate in every regard (as far as we can tell).

Based on a publicly available Z80 source listing, the
developer is working on the Foenix port as a personal
challenge. We had a chance for a quick chat and I am
pleased to share the dialogue.
As part of the October update, we’ve also posted a .hex
file of one of the later versions of the demo to the Foenix
Marketplace. Keep in mind as you play this, it’s merely
a demo and just for testing (plenty of bugs present, some
of which add to the fun).

Q: Is your code written in Assembly, C, or something
else and which compiler/assembler did you use?
A: It's written in [65816] assembly using Merlin32 by
Brutal Deluxe.

(Editor’s note: Apple II aficionados will remember the original
Merlin Assembler, which was developed by Glen Bredon, a
UC Berkeley math professor who later taught at Rutgers in
New Jersey. When Glen passed away, his wife graciously
turned his work over to the public domain)

Q: You mentioned you took the Z80 source, was that just
for the AI or monster movement / behaviors or was the
Z80 assembly more or less [complete and] directly
transferrable to rewriting it in 65816. Do you think that
the classic patterns work?

A: It’s directly ported from original code… basically
everything. If you were to put a 65816 inside the
Pacman cabinet, the game would run.

Q: Did you have to do anything special to negotiate
interrupts or the diff in speed between the 3 MHz. and
the Foenix or do timers take care of that for you?
A: I'm trying to get it as close as possible to the original.
Ms Pacman arcade had patches to try and reduce the
usage of the patterns that were used in the original
Pacman. The only thing that is challenging [to model
precisely] is the random number generation; the Z80 has
a built in random function, and Ms. Pacman has as
second random function that samples the 64k memory
space in the hardware. Our 64k space doesn't match the
original, so the random numbers will vary.
The C256 is clocked much faster than the original
hardware so there are no issues there. The Pacman / Ms.
Pacman main loop runs on the vblank interrupt on the
original hardware, so I'm just doing the same thing on
the Foenix. The game will be a hair slower since the
original hardware I think is something weird like 60.6
Hz. and the Foenix is 60 Hz.
[from an audio perspective] The DAC in the original Ms.
Pacman hardware can do 3 voices at 96 KHz. And the
DAC on the Foenix is a single voice at 48 KHz., so there
will be a challenge software mixing the 3 channels.

Q: I was about to ask you about audio. Did the original
use PCM based sounds.
A: I haven't done the audio yet, so we'll see. It has a
very small PCM wave table. I’m looking forward to
hearing those sounds.
Also the original hardware uses 8 x 8 tiles, and 16 x 16
sprites. So on the Foenix I'm in 800 x 600 mode, my
tiles at 16 x 16 (I'm just doubling up the pixels), and the
same with the sprites (32 x 32), doubled up from 16 x
16; so the code just treats it as if it's 8 x 8 tiles, and 16 x
16 sprites.
Basically at the higher resolution, the Foenix native sizes
can be made to look half sized.

Q: Great info, thanks. Final question, what is next for
you after you complete this; another classic game or will
you do something net new? Also what Foenix hardware
do you own or have on order?
A: I have an FMX, and a U+. I'm unsure what is next.
The source code to Merlin 16 is floating around, it would
be interesting to bring it over to the Foenix, so that Ms.
Pacman could be assembled on the actual hardware
instead of cross-assembled. But I'm not sure what's next.
One thing at a time. Probably the original Pacman
would go very quickly. But we'll see. I have a Gen-X on
order.

* Interested in the origins of Ms. Pacman? See this talk by Steve Golson of GCC, recorded at Game Developers Convention 2016

https://www.gdcvault.com/play/1023366/Classic-Game-Postmortem-Ms-Pac
https://www.gamedeveloper.com/design/the-pac-man-dossier
https://www.twingalaxies.com/jpittman
http://cubeman.org/arcade-source/pacman.asm
https://brutaldeluxe.fr/products/crossdevtools/merlin/
https://en.wikipedia.org/wiki/Glen_Bredon

1609/2022

Just 4 Fun - This month’s puzzle
A ‘tear-out’ activity book exercise for the kid in all of us.

‘MAD Magazine’ meets ‘Children’s Highlights Magazine’ meets Foenix

To submit an entry:

Email me at the address noted on pg. 2 above or
reach out via Discord. In the immortal words of
Gene Kranz, “good luck to all of you”.

About:

- The original Mad Magazine was published in the
2nd half of the last century and had an unusual
off-brand of humor, often including biting
political and social commentary. As a youth, I
recall one of my Uncles having a stack of these.
Other than Alfred E. Neuman, mostly, I remember
one very specific feature, printed on the inside of
the back pages. All I can say is you’ll know it
when you see it.

- Children’s Highlights was a family run business
for many years and continues to publish actual
puzzles and activities including the type featured
in Foenix Rising such as word search, crossword,
and cut-out activities.

Puzzle Hints (may apply to either puzzle):

- Board ‘modifications’ may be necessary (BYO
scissors or a graphics editing tool); Foenix
designs often come with unpopulated sockets and
options; consider how you might modify the
circuit board in order to transform it into
something that it is not.

- Consider how one or more of the cut-out
components located at the bottom of the circuit
board picture might be leveraged in a modified
design.

- Circuit board designers often embed hidden
messages on board labels, can you find any that
look out of place? (I will share that despite
Stefany Allaire’s appreciation of humor and irony,
all of the out-of-place notations are my doing and
part of the puzzle).

- Foenix systems include standard ports for as much
connectivity as possible, but not all boards
support all peripherals. What does this board
appear to feature that may not belong? What can
be done to change this?

Foenix hardware evolution

Long time Foenix watchers have seen pre-FMX
hardware development morph into the FMX (the
first GA product), then to the C256 U+ and so on.

Some models have quite a bit in common with
others, and some, not so much; but they all share a
common DNA and many of the same components.

Your mission: Examine page 17 closely and take
action based on the instructions below. (download
the hi-res version from the Foenix Marketplace for
best results).

This is not just fun and games. This month, Foenix
Rising is sponsoring a contest with prizes:

- Puzzle #1: Visually inspect the A2560K circuit
board picture and identify at least 10 aspects of
the board picture that seem out out of place,
peculiar, or that just do not make sense
considering what you know about the
specifications of the platform; the highest
correctly identified tally submitted by
December 15th will win a custom made mini-
ITX case and a picoPSU power supply similar
to the case pictured on pgs. 1, 30, and 32; with it,
you’ll be able to get your F256 Jr. powered up and
into action quickly!

You’ll need your own keyboard and monitor, but
much of the header wiring will be complete and
the included power supply is plug-and-play. Item
will be shipped world-wide at no cost in the
month of December or January, pending receipt of
my own prod version, required in order to
guarantee compatibility and fit. To win, you must
have submitted an order for a F256 Jr.

- Puzzle #2: Solve, by modding the A2560K
“circuit board” to transform it into something that
it is not. Correctly completed puzzles receive a
40 page, spine bound compilation of Foenix
Rising Beginner’s Corner and related articles
from issues #1 through #3, printed on high quality
paper stock. It’s the perfect quick start guide to
get moving if you are new to Foenix.

https://pbfluids.com/2015/06/who-are-your-people/

1709/2022

Click here for a
direct link to the

Foenix Marketplace
so you can

download a hi-res
copy of this page

http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/

Introduction

Do you know the internal date on your Foenix computer?
I’m willing to bet, you don’t; after all, it’s not very
straightforward how to query your FMX or Foenix U / U+
computer about what date they think it is.

But let’s take a few steps behind, first you need to know
that your Foenix computer, unlike other 8-bit retro
computers of the time (C64, Apple, Atari), is equipped
with a Real Time Clock (RTC) chip, the Texas Instruments
BQ4802.

h"ps://www.).com/lit/ds/symlink/bq4802ly.pdf

This simple chip has a real time clock that keeps track of
the date/time, even when you power off your computer
(assuming you installed the required battery). The chip
also allows you to program alarms on specific dates/times
that can trigger an interrupt on the Foenix, but that’s
outside the scope of this article.

So, now you know that your Foenix has this chip, and if
you have played a bit with the integrated BASIC816 you
might notice that you can query the time on your computer
using the command GETTIME$, that responds by printing
the time onscreen in the format HH:MM:SS.

PRINT GETTIME$(0)

11:05:23

I know this is hardly impressive, but this opens a few more
questions:

• How do I get the Date?

Answer: BASIC816 has no command to show us
the Date, but it can be queried from the chip with a
few PEEK commands and a bit of number decoding
magic.

(nothing is straightforward in this life…)

• How do I change the time/date if it’s wrong?

Answer: As you might guess it by now…
BASIC816 doesn’t have a function to do this, but
you can POKE values to update the time and date
(if you know what values to poke!)

Well before going into peeking and poking our way around,
you might notice my senseless humor in the comments in
parenthesis, well those comments are there because the chip
keeps track of dates and time using BCD encoding, and if
you don’t know BCD encoding, you’re in luck! since we are
providing a brief primer on what BCD is and how to use it.

BCD Encoding

BCD stands for “Binary encoded
decimal” and it is a way of
representing numbers in memory.
In this encoding each digit is
represented by a fixed number
of bits. In this case the chip uses
a packed BCD format (or simply
packed decimal). In this format
each of the two nibbles (4 bits
unit) in each byte represent a
decimal digit.

Packed BCD has been in use
since at least the 1960s and is
implemented in all IBM
mainframe and other* CPUs
since then.

The maximum BCD encoded number that can reside in a
byte is 99 (since each nibble holds a digit from 0-9).

The implementation in the Texas instruments chip is big
endian, with the more
significant digit in the upper
half of each byte and the less
significant on the lower half.

Date and Time on your Foenix
Written by Ernesto Contreras

1809/2022

Decimal digit

BCD encoded
value bits 0-3

8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

Nibble 1 Nibble 0

0010 0001

On pg. 31. of our August issue, we reviewed an issue of COMPUTE magazine from 1980 and touched
upon an obscure ‘80s product, the Hayes Stack Chronograph. As part of the discussion, we made a passing
reference to the Foenix RTC circuit. This month, contributing developer Ernesto Contreras is back with
a closer look at how this Texas Instruments IC is implemented on Foenix Computers. In this article, we
will learn about BCD (binary coded decimal) and interface details of the TI chip. Ernesto has included a
BASIC816 example that allows you to set and read the time/date yourself. Look for this program (as
“I03P20A.BAS”) on the Foenix Marketplace, and begin to experiment for yourself.

* fun retro fact - The Nintendo NES used the Ricoh 2A03 processor which is a modified version of the 6502 core with additional functions
added. Ricoh disabled the BCD functionality; some say to accommodate other capabilities, others say to avoid copyright infringement!

https://www.ti.com/lit/ds/symlink/bq4802ly.pdf

Example: the number 21 as represented in Packed BCD:

Value encoded in Byte : 33
Binary representation : 0010 0001
Decoded Decimal : 2 1

Shifting and masking operations are used to pack or
unpack a Packed BCD digit. Other bitwise operations are
used to convert a number to its equivalent bit pattern or
reverse the process.

Knowing all this we can provide an example in BASIC on
how to encode/decode BCD using:

• Division and multiplication for shifting

• Bitwise AND operations

Here is how to encode a number between 0-99 in Packed
BCD using BASIC816:

v%=value: REM value to convert (0-99)
BCD%=int(v%/10)*16+(v%-int(v%/10)*10)
REM encoded byte in BCD%

Note: Multiplying by 16 (or 2 ^ 4) is the equivalent of shifting a
number 4 bits to the right (moving it to the upper nibble)

Example: encode the decimal number 21

V%=21
BCD% = int (21/10)*16 + (21 – int (21/10) * 10)
BCD% = (2*16) + (21 – 2*10)
BCD% = (32) + (21-20)
BCD% = 32 + 1 = 33

Here is how to decode a number in Packed BCD using
BASIC816:

BCD%=BCDvalue: REM encoded BCD number read from
a Packed BCD byte
v%=int(BCD%/16)*10+(BCD% and 15): REM unencoded
value in v%

Note: A bitwise AND of the current byte against 15 preserves the

value of bits 0,1,2,3 and turns off bits 4,5,6,7

Example: decode the Packed BCD number 33

BCD%=33
V%= int(33/16)*10+(33 and 15)
V%= int(2.0625)*10 + (1)
V%= 2*10 + 1 = 21

1909/2022

Base
10

Binary Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Current byte 167 1 0 1 0 0 1 1 1

Bitwise Opera9on
Mask

15 0 0 0 0 1 1 1 1

Result 7 0 0 0 0 0 1 1 1

Now that we know how to interpret BCD numbers let’s go
ahead and see where the Real Time Clock data resides.

RTC Registers

For the Foenix U / U+, the following Memory address
hold the registers of the Real Time Clock:

Addresses $AF0800 - $AF080A and $AF080F use values in BCD
encoding

Date and Time Components

The registers listed above can be used to put together the
date and time, to be explicit on how it needs to be done
here’s a brief example.

Date / Time:

2022/09/10 5:02:00

Remember, the value from these registers is encoded as BCD

Register Address Description

RTC_SEC $AF0800 Seconds Register

RTC_SEC_ALARM $AF0801 Seconds Alarm Register

RTC_MIN $AF0802 Minutes Register

RTC_MIN_ALARM $AF0803 Minutes Alarm Register

RTC_HRS $AF0804 Hours Register

RTC_HRS_ALARM $AF0805 Hours Alarm Register

RTC_DAY $AF0806 Day Register

RTC_DAY_ALARM $AF0807 Day Alarm Register

RTC_DOW $AF0808 Day of Week Register

RTC_MONTH $AF0809 Month Register

RTC_YEAR $AF080A Year Register

RTC_RATES $AF080B Rates Register

RTC_ENABLE $AF080C Enables Register

RTC_FLAGS $AF080D Flags Register

RTC_CTRL $AF080E Control Register

RTC_CENTURY $AF080F Century Register

Date
Component Century Year Month Day

Example 20 22 09 10

Address $AF080F $AF080A $AF0809 $AF0806

Time
Component Hour Minute Second

Example 5 02 00

Address $AF0804 $AF0802 $AF0800

2009/2022

To summarize

I. To read the date and time you need to:

a. PEEKing the appropriate RTC registers

b. Decode the BCD value in these registers

to Decimal

c. Show selected Date/Time Components

II. To change the date or time you need to:

a. Encode the Components you are going

to update (year/month/day, etc…) in
BCD

b. POKE the BCD values into the
appropriate RTC registers

Sample Program

Finally, here is a sample BASIC program that reads &
updates the Date / Time using the RTC in your Foenix.

If you choose to update the Date/Time, the new values
should survive after powering off your computer
(assuming a battery is present). You should be able to read
the new defined values after you power down and up
again with this program.

5 CLS:REM read date/time from RTC chip
10 c%=PEEK(&haf080f):y%=PEEK(&haf080a):REM Century / Year
20 m%=PEEK(&haf0809):d%=PEEK(&haf0806):REM Month / Day
30 h%=PEEK(&haf0804):n%=PEEK(&haf0802):REM Hour / miNute
40 s%=PEEK(&haf0800):f%=PEEK(&haf080d):REM Second
50 yr%=(INT(c%/16)*10+(c% AND 15))*100:REM decode BCD numbers
60 yr%=yr%+(INT(y%/16)*10+(y% AND 15)
70 mo%=(INT(m%/16)*10+(m% AND 15))
80 dy%=(INT(d%/16)*10+(d% AND 15))
90 ho%=(INT(h%/16)*10+(h% AND 15))
100 mi%=(INT(n%/16)*10+(n% AND 15))
110 se%=(INT(s%/16)*10+(s% AND 15))
120 IF (f% AND 1)=1 THEN 140
130 PRINT "Battery Failing, date/time might be invalid!":GOTO 120
140 PRINT "Battery Status Ok!”
150 PRINT "time stamp:";yr%;"/";mo%;"/";dy%;" “;
160 PRINT ho%;”:";mi%;":";se%
170 PRINT "press y to change date/time”
180 GET k$: IF k$<>"y" THEN 340
190 INPUT "Enter Year”;y%
200 INPUT "Enter Month”;m%
210 INPUT "Enter Day”;d%
220 INPUT "Enter Hour”;h%
230 INPUT "Enter Minute”;n%
240 c%=INT(y%/1000)*16+(INT(y%/100)-INT(y%/1000)*10):REM BCD Century
250 y%=y%-INT(y%/1000)*1000:REM get decimal Year
260 yr%=INT(y%/10)*16+(y%-INT(y%/10)*10):REM BCD year
270 mo%=INT(m%/10)*16+(m%-INT(m%/10)*10):REM BCD month
280 dy%=INT(d%/10)*16+(d%-INT(d%/10)*10):REM BCD day
290 ho%=INT(h%/10)*16+(h%-INT(h%/10)*10):REM BCD hour
300 mi%=INT(n%/10)*16+(n%-INT(n%/10)*10):REM BCD minute
310 POKE &haf080f,c%:POKE &haf080a,yr%:POKE &haf0809,mo%
320 POKE &haf0806,dy%:POKE &haf0804,ho%:POKE &haf0802,mi%
330 GOTO 10340 END

Available on the
Foenix Marketplace

as “I03P20a.BAS”
(click here)

http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/

Last month, we examined the v1.0 release of the Foenix
Sprite Editor for C256 platforms. The short recap, in
case you missed it: Foenix Sprite Editor is an easy to use
tool, purpose built to support the capabilities of Foenix
platforms, and a natural evolution from the original
sprite editors used on vintage platforms. I continue to
use it and found it handy for animating sprites such as
those featured in Beginner’s Corner.
In mid-August, Ernesto reached out with information on
a 1.1 release and we are here to talk about it.
As prior, the distribution is packaged within a PC / Mac
compatible .zip file and the v1.1 distribution looks to
have at least 3 files updated.
• SPREDIT.BAS - includes bug fixes and support for

new functions including changes to the default palette
• A new icons file (now named ICONS2.SPR to

accommodate the new colors)
• An updated manual

New features
v1.1 includes several new features (most associated with
color tools) as follows:
Color pickup - there is now
a color pickup function.
Similar to MacOS,
Windows, or open
(GIMP, for example)
graphic applications,
this feature is useful
when needing to select
a color you’ve already
used on the edit grid.
Right clicking actuates
this function, selecting
the values as used in
the identified cell.
RGB value display -
choosing precise custom colors is now easier, thanks to a
new visual indicator of RGB values noted on the status
bar at the top of the screen; see the highlighted section
called out in yellow in figure 21a above.
New default palette - there is an updated
default palette which includes changes to
dozens of colors, a new ‘basic' 16 color
palette (located at values $F0 - $FF the last
two row of the color picker), and
smoother gradians across a range of base
colors.
Note: If you’ve built sprites using the
v1.0 palette and neglected to save the
palette, you’ll notice that your sprites
look a bit odd; see the pic of the Foenix
Balloon basket to the right as an example.

Ernesto’s Foenix Sprite Editor v1.1
A quick look at the new features and a closer look at palettes

To revert back to the original colors, you’ve got three
choices.
a) check page 23 below for values you can plug into the
DATA statements within SPREDIT.BAS. Once modified,
you should re-save the program with a different name.
b) head to the Foenix Marketplace and look for the file
SPREDTV1.PAL, then use the load palette function each
time you use the Sprite Editor.
c) use the new the RGB custom color edit sliders to dial-
in a precise colors that meet your approval where needed.
Always use the save palette features (see next page).

Reintroducing Palettes
It is important to differentiate the way in which the
Foenix Sprite Editor instantiates its palette versus the
way that BASIC816 manages color data, versus the
manner in which you will need to address Foenix (Vicky
II) registers, if poking values from BASIC or storing
values from assembly language.
Regardless of the method leveraged, once stored, it will
be difficult to impossible to read stored values because

palettes are stored in
VRAM memory space
and in most versions of
FPGA code (which will

vary by platform), this area of memory is write-only.
So far in Beginner’s Corner, we've been working
exclusively with RGB values encoded in BASIC DATA
statements, and setting colors using the SETCOLOR
command. which uses arguments as follows:

SETCOLOR {Lnum}, {Cnum}, {Rval}, {Gval}, {Bval}
Notes:

Vicky II supports 8 color look up tables (#0 through #7)
for sprites, tiles, and bit mapped graphics as well as two
color LUTs for text modes (#8 for 15 foreground colors
and #9 for 15 background colors).
Actual RGB color will vary slightly based on your
monitor type and settings but will generally map to the
24-bit Pantone style colors found on numerous sites.
Browse the web and you'll see what I mean.

09/2022

Sprite editor view
w/ v1.1 palette

… should look
closer to this (as

displayed)

Simple palette

figure 21a

Param Description Valid values

Lnum LUT Number 0 .. 7

Cnum Color Number 1 .. 255

Rval Red value 0 .. 255

Gval Green value 0 .. 255

Bval Blue value 0 .. 255

21

https://htmlcolors.com/palette/905/donkey-kong

2. Move from SRAM into VRAM with MEMCOPY in
the same way that you would use it for moving sprite
data after load (however, using the LINEAR directive
because this is numeric data, not a shape*):

MEMCOPY LINEAR &h100000, 1024 TO LINEAR
&hAF2000, 1024

As discussed previously, once established (or in this
case, ‘loaded') we need to associate the object with a
LUT via SPRITE. The following table details LUT and
addresses; we used $AF:2000 in the example above.

Manipulating .PAL data from BASIC
If you wanted to do it the old fashioned way, you can use
the eight line BASIC program below to load a .PAL file
from disk and then transfer it to VRAM memory by
iterating from 1 to 255. (remember, color 0 is
transparent and will be conveniently skipped based on
the logic and range leveraged below)
Doing it the hard way is a learning opportunity. Here we
use PEEK statements wrapped in a FOR : NEXT loop:

10 BLOAD “MYCUSTOM.PAL”, &h100000
20 FOR x% =1 to 255
30 base%= x%*4+&h100000
40 b%= peek(base%)
50 g%= peek(base%+1)
60 r%= peek(base%+2)
70 SETCOLOR 0, x%, r%, g%, b%
80 NEXT

Of course, you can make this ‘your own’ and improve it
by inserting PRINT statements with an onscreen counter,
a bar graph or something else; how about 64 balloons
that transform from grey to full and varied color while
ascending or descending based on color temperature like
Galileo’s thermometer?

What about performance?
Relative to the MMU function (used by MEMCOPY),
BASIC code of this type is slow but in most cases, we
will only be doing it once at the start of our program.

If interested in more? I'll meet you in Beginner’s
Corner, just two pages down.

Foenix Sprite Editor .PAL files
When the editor initiates, it loads the icons file into
memory along with a set of machine code functions, but
as of the v1.1 release, color palette data is still populated
from DATA statements in the BASIC portion of the
program (lines 2000 - 20500).
When you use the save-palette-to-disk
function (the icon to the right), the editor
creates a 1K file (256 colors x 4 bytes per
color).
The.PAL file is a binary data file with a
repeating pattern of values representing the
GAMMA, RED, GREEN, and BLUE of
colors in the palette but [important point], stored in
reverse in order to match Vicky II’s memory map and
therefore, be load-ready. See below.
The BASIC SETCOLOR command, on the other hand,
masks this peculiarity from the user; (colors are noted in
RGB order and there is no mention of GAMMA values;
they are dealt with behind the scenes).
Worth noting that the GAMMA value is not currently
implemented in Vicky II and is not used by SETCOLOR,
but it still consumes 256 bytes of the 1024 byte .PAL
file, it exists in memory, and is represented in the table
below in the rightmost column.
The following diagram explains this encoding scheme.
Here, we tie the memory map (and file format) to
BASIC statements, to the first 8 colors of the color
picker in the editor. Again, note that GAMMA, red,
green, blue are reversed (see headings).

Using a .PAL in your own program
Two steps are all that are required in order to instantiate
a custom palette from this load-ready file.
1. Load into SRAM memory using a BLOAD, such as:

BLOAD “MYCUSTOM.PAL”, &h100000

save palette
icon

09/2022

LUT Address range
0 $AF:2000 - $AF:23FF

1 $AF:2400 - $AF:27FF

2 $AF:2800 - $AF:2BFF

3 $AF:2C00 - $AF:2FFF

4 $AF:3000 - $AF:33FF

5 $AF:3400 - $AF:37FF

6 $AF:3800 - $AF:3BFF

7 $AF:3C00 - $AF:3FFF

22

DATA 0,0,0,0,0,0,34,35,35,67,69,73
DATA 98,104,113,130,139,152,166,174,186,200,200,200

reserved for transparent

actual black
a very dark grey

other greyscale colors

BL GR RD

… and also to:

Corresponds to:

GA

address

* the diff being that shapes are two dimensional (x-width by
y-height) and therefore have ‘stride’; see pg. 18 of issue #2

Gamma values
(all 255)

http://dataphys.org/list/galileo-thermometer/

Color # Red Green Blue Red Green Blue Red Green Blue Red Green Blue
0 - 3 0 0 0 0 0 0 34 35 35 67 69 73
4 - 7 98 104 113 130 139 152 166 174 186 200 200 200

8 - 11 98 93 84 133 117 101 158 140 121 174 161 137
12 - 15 187 175 164 204 195 177 234 219 201 255 243 214
16 - 19 88 49 38 115 61 59 136 80 65 154 98 76
20 - 23 173 110 81 213 141 107 251 170 132 255 206 127
24 - 27 0 39 53 0 56 80 0 77 94 11 102 127
28 - 31 0 111 137 50 140 167 36 174 214 136 214 255
32 - 35 102 43 41 148 54 58 182 77 70 205 94 70
36 - 39 227 120 64 249 155 78 255 188 78 255 233 73
40 - 43 40 43 74 58 69 104 97 95 132 122 119 153
44 - 47 134 144 178 150 178 217 199 214 255 198 236 255
48 - 51 0 34 25 0 50 33 23 74 27 34 89 24
52 - 55 47 105 12 81 136 34 125 164 45 166 204 52
56 - 59 24 31 47 35 50 77 37 70 107 54 107 138
60 - 63 49 142 184 65 178 227 82 210 255 116 245 253
64 - 67 26 51 44 47 63 56 56 81 64 50 92 64
68 - 71 65 116 85 73 137 96 85 182 125 145 218 161
72 - 75 94 7 17 130 33 29 182 60 53 228 92 95
76 - 79 255 118 118 255 155 168 255 187 199 255 219 255
80 - 83 45 49 54 72 71 77 91 92 105 115 115 127
84 - 87 132 135 149 171 174 190 186 199 219 235 240 246
88 - 91 59 48 60 90 60 69 138 82 88 174 107 96
92 - 95 199 130 108 216 159 117 236 197 129 255 250 171
96 - 99 49 34 42 74 53 60 94 70 70 114 90 81

100 - 103 126 108 84 158 138 110 192 165 136 221 191 154
104 - 107 46 16 38 73 40 61 102 54 89 151 84 117
108 - 111 185 109 145 193 120 170 219 153 191 248 198 218
112 - 115 0 46 73 0 64 81 0 81 98 0 107 109
116 - 119 0 130 121 0 160 135 0 191 163 0 222 218
120 - 123 69 49 37 97 74 60 126 97 68 153 121 81
124 - 127 178 144 98 204 169 110 232 203 130 251 234 163
128 - 131 95 9 38 110 36 52 144 70 71 167 96 87
132 - 135 189 125 100 206 151 112 237 182 124 237 212 147
136 - 139 50 53 88 74 82 128 100 101 157 120 119 193
140 - 143 142 140 226 156 155 239 184 174 255 220 212 255
144 - 147 67 23 41 113 43 59 159 59 82 217 74 105
148 - 151 248 93 128 255 125 175 255 166 197 255 205 255
152 - 155 73 37 28 99 52 50 124 75 71 152 89 90
156 - 159 172 111 110 193 126 122 210 141 122 229 154 124
160 - 163 32 41 0 47 79 8 73 93 0 97 115 8
164 - 167 124 131 30 150 154 38 180 170 51 208 204 50
168 - 171 98 42 0 117 59 9 133 79 18 158 101 32
172 - 175 186 136 46 209 170 57 232 210 75 255 246 79
176 - 179 38 35 61 59 56 85 86 80 111 117 104 110
180 - 183 145 122 123 179 151 131 207 175 142 254 223 177
184 - 187 29 44 67 46 61 71 57 77 60 76 95 51
188 - 191 88 113 44 107 132 45 120 158 36 127 189 57
192 - 195 55 36 35 83 57 58 120 76 73 148 93 79
196 - 199 169 109 88 191 126 99 215 147 116 244 163 128
200 - 203 45 75 71 71 101 90 91 123 105 113 149 125
204 - 207 135 174 142 138 193 150 169 209 193 224 250 235
208 - 211 0 27 64 3 49 95 7 72 124 16 93 162
212 - 215 20 118 192 64 151 234 85 177 241 109 204 255
216 - 219 85 71 105 118 93 115 151 116 136 185 140 147
220 - 223 213 163 154 235 189 157 255 213 155 253 247 134
224 - 227 29 29 33 60 49 81 88 74 127 121 100 186
228 - 231 149 133 241 169 150 236 186 171 247 209 189 254
232 - 235 38 36 80 40 51 93 45 61 114 61 80 131
236 - 239 81 101 174 82 116 197 108 130 196 131 147 195
240 - 243 73 33 41 94 65 74 119 83 91 145 96 106
244 - 247 173 121 132 181 139 148 212 174 170 255 226 207
248 - 251 114 28 3 156 51 39 191 90 62 233 134 39
252 - 255 255 177 8 255 207 5 255 240 43 255 255 255

09/2022

Two rows in the table to the left
represents 8 colors or one row
below (the yellow dashed line)

Each grey shaded row represents the
start of a row in the palette above.
The white square cursor above is on
the 2nd position of the 17th row.
To work your way from the color
picker to RGB values, count rows (r)
and subtract 1, multiply by 8, then add
the left-to-right position (p) minus 1:
((r - 1) * 8 + (p - 1)) to locate the
color # that fits within the range in the
leftmost column. Or in this example:
(17 - 1) = 16 * 8 = 128 + (2 - 1) = 129
This yields: R = 110; G = 36; B = 52

And just to double-check, we can
Google “RGB 110 36 52” and find the
expected result:

Picture of (part of) the v1.0
Sprite Editor color palette.

NOTE: this was taken with an
iPhone so is not true color.

Foenix Sprite Editor - Color Table (from v1.0)
This table documents the full color palette LUT from the initial release of the Foenix Sprite

Editor and provides a means to retrieve the data behind selected colors

Color 0 Color 1 Color 2 Color 3

Color 252 Color 253 Color 254 Color 255

Yes! That looks about right to me…

23

2409/2022

Beginner’s Corner
Motion and commotion in 25 lines or less

In this month’s column, we close the multipart BASIC816 “Foenix Balloon” series by trading memory to
avoid complexity; We will also discuss BASIC language coding ‘style’ and animation. This will be the last
of the BASIC816 series for now, but we’ll return two issues from now with some Assembly Language fun.

In issue #1 of this publication, we introduced sprites and
discussed how to define and move them from point ‘a’ to
point ‘b’. In the article, passing reference was made to
“non-linear” movement and “animation” as advanced
topics and we promised to revisit them.
In issue #2, we wrote and used a few simple BASIC816
programs to analyze sprite LUT data and then wrote
some code to affect simple color-based animation; we
also wrote code to move the Foenix Balloon diagonally
around the screen, obeying the edges of the screen in an
infinite flight path.
(we also failed to implement one feature, to animate a
simulated flame).
In this issue, we will redeem ourselves by doing the
following:
- leverage different sprite images for ‘powered’ flight

versus unpowered (descending/floating) flight
- animate a flame, using several pre-defined sprites and

carefully selected colors from a specific color LUT.
- further animate the Balloon when ‘landing’, using a

sequence of images that when swapped frame-to-frame,
exhibit the appearance of a hard landing

- leverage some amount of randomness in path of
descent to not only break from the previous formula of
linear diagonals, but also, to simulate a quicker descent
and increased randomized horizontal motion at higher
(numbered) ’y’ pixels (which are lower on screen)

- add additional variability by dynamically modifying
part of the color palette with a minimum of code

- most importantly, do all of this in 25 lines of BASIC
code (not counting the palette or sprite data load/setup)

What are we covering in this installment
Before we get to the code and methods leveraged, we
have two matters to cover.
1. Discuss the updated sprite set - in the introduction, we

mentioned the memory vs. complexity trade-off;
we’ve ‘improved’ the base image and expanded the
single sprite to a 12-sprite set.

2. Discuss programming ‘style’ and the fact that we
broke a few of the cardinal rules before we’ve even
established them.

And then we will discuss the algorithms and approach
leveraged for this month’s program. Finally we will talk
about where we are heading from here.

Sprite Animation
In issue #2 we animated the beacon at the top of the
balloon but did so using color LUT manipulation instead
of flipping between multiple sprite images.
This month, we will do a bit of both.
To begin, the original sprite was modified to use a solid
color across the Foenix ‘F’ (versus the choice of
transparent/color $00), and we fixed a few mis-clicks in
the selection of the original and v2 sprites (see figure 25a
of the August issue and related text).
Next, we used the Foenix Sprite Editor copy/paste
function to duplicate the base image and then chose a
series of white, yellows, oranges, and reds that would be
convincing when animated to simulate a flame. The end-
goal (as prior) was to animated the flame only when
ascending. We used a 6 sprite set for this.
With a 2nd set of 6 sprites, we chose one frame of the
basic balloon without a flame for use when descending
(also used when stationary / landed) and then copied and
modified it five times to create a ‘splashdown’ effect,
simulating dust and dirt kicking up upon landing.

See figure 24a for a closeup of the first three frames of
the basket.
It’s an extremely simple
effect (with only five
frames used), but will be
convincing once put into
action.
We could have used 512
sprites just for this
animation instead of five.
Remember, Vicky II
supports 64
simultaneously displayed
sprites; the number of
sprite definitions is limited only by the amount of
memory we have (or are willing to dedicate to it). As you
will see in the code, re-pointing a visible sprite to a
different image is as simple as plugging a different
address in the SPRITE command as follows:

SPRITE 0, 0, &hB00000+(spr%*1024)

address

fig. 24a

Because of this rudimentary level of flow control (there
was no ELSE command or compound logic), and because
of the line numbering scheme, programs tended to be
difficult to read and/or convoluted.
While doing research for this article, I was surprised to
find that GOSUB / RETURN was part of the original
language definition. This must have been revolutionary
thinking at the time but then again, even vintage
processors supported sub-procedures and assembly
instructions for the basic three intrinsics (branch
unconditional; branch on ‘condition' such as overflow,
borrow, zero; and jump subroutine (with return).
As an interpretive language, many BASIC versions store
programs using a token methodology (and some, such as
the early Sinclair machines, required you to choose the
command to enter as a token via set of shifted keys
which would token-ize immediately). Tokens reduce
memory usage, improve execution speed, and limit
parsing and error detection at run-time.
Commodore’s PET BASIC introduced a full screen
editor and a set of shifted shortcuts for statements that
could be used to reduce the amount of typing and
improve the amount of time required to enter a program.

A practical example of what not to do
Examine the code below. It looks old for a reason. It
was written almost 40 years ago. No, that is not genuine
parchment but ‘yes’, it was transferred from machine
readable form to something called ‘paper' with a then,
relatively new invention called the dot matrix printer!

I wrote this in 1984 and broke all three of the five
cardinal rules of BASIC programming.

• Don’t pack unrelated code onto a single line (line
470 is 77 characters long and line 540 is 78!)

• Minimize the use of direct memory access (PEEK,
POKE, and SYS) commands, if you can help it.

• Use spaces and REM statements to make code
readable and understandable so another user or
programmer can maintain it (or learn from it).

Here’s a quiz: what does this program do?
Hard to tell, but this is from a BBS that I wrote and
operated while in College in Berkeley California. Most
interesting (as I read this today) was use of the h$(x)
array which built 7 strings that when printed, displayed
ASCII hangman for one of the many online games.

A word on memory, complexity, and the trade-off
In total, the new sprite-set consumes 12 x 1024 bytes of
storage/memory or 12K in total. (the file saved by the
Foenix Sprite Editor is actually this amount + 1 byte; the
additional byte contains the value 12, which represents
the number of sprites within).
The 12,288 bytes of data is more than 1/3rd of the entire
usable memory inside of a Commodore 64, but then
again, the Commodore did not support sprites of such
density and high color. As we discussed in issue #1,
Commodore sprites were only 63 bytes in size (versus
1024 bytes on Foenix). There is something to be said
about necessity, and an embarrassment of riches.
Computing has always been a trade-off between the triad
of CPU power, memory (and/or storage) capacity, and
input/output bandwidth / speed, and the bottleneck
moves as technology improves and economics shift. If
the bottleneck did not appear somewhere, we would
accomplish an infinite amount of work, instantly.
Computing is also a trade-off between complexity of
code and resources consumed. It’s nice to have choices.
As retro platforms go, Foenix platforms put us in great
shape; even on the middle-of-the road Foenix C256 U+,
we have 8x the # of sprites, from 8 to 32 times the
amount of memory, greater than 8 times the CPU speed
and power not to mention an acceleration engine (for
lack of a better word) to coordinate direct memory
access, graphics, and the rest (in Vicky II).
The F256 Jr. (see pgs. 29-32) rightsizes the display back
to 1982 resolution but adds full
color depth, powerful graphics, and
other features of the bigger Foenix
platforms. It is well appointed.

Code style and conventions
The BASIC programming language
never imposed discipline in the
way that procedural languages
ultimately did. BASIC also did not
require strict type casting;
programs “just worked”.
BASIC was invented at Dartmouth University in 1964
and truly was intended to be “for the masses”. Have a
quick look at this 50-year celebratory (4 minute) video.
Fun fact, the Foenix Marketplace BASIC
icon (figure 25a) was derived from
Dartmouth’s green celebratory graphics
from their golden anniversary campaign in
2014. Dartmouth also produced a more
comprehensive recount of the anniversary in
the“Birth of BASIC”, here.
Despite extensions (and in many cases, abuses) by every
8 bit computer manufacturer to date, the core of the
language has not changed much. The original 1954
version (similar to BASIC816) only supported GOTO,
GOSUB / RETURN, and IF / THEN (line #).

2509/2022

fig. 25a

https://www.youtube.com/watch?v=gxo9LVIgOiI
https://www.youtube.com/watch?v=WYPNjSoDrqw

2609/2022

Code Description

Now let’s move on to describe each code section. If
you’ve printed this on double sided paper, the program
listing should be directly across from this page. If not,
I’m sorry :)
Line 100 is executed once and merely sets a bunch of
variables.
Line 110 is executed once at the start of the program and
then anytime the balloon hits the top of the screen. It
resets a number of variables and re-points the sprite to
the base image (no flame, descending).
Lines 120 - 140 are executed every iteration; they test to
see if it's time to toggle the beacon and if so, jumps to
that routine which jumps back; it positions the sprite at
the ‘new’ x and y value, and it runs a tight delay loop for
gr iterations. This is our gravity variable; note that it is a
float, not an integer.
Lines 150 - 160 deal with vertical (y) motion. If
ascending, then jump to 300; if not, simply increase y%
by 1 pixel, subtract 0.2 from gravity, and test to see if we
are at bottom; if so, goto 600
Line 170 checks to see if we are within the ‘windy’ zone
by generating a random number * the current gravity
value + 10 versus 75 and if less, it skips the horizontal
movement and jumps back to 130. This is the only time
we avoid horizontal movement and the effect of this
skittishness is convincing since it’s a) random and b)
occurs more frequently at lower ‘altitudes’. Since we
haven’t adjusted x, there is no need to visit line 120; we
always do the y movement before getting to x.
Lines 200 - 270 contain the x block logic. First, we test
to see if the balloon is coming ‘in’ (from sea, I suppose)
or heading out, relative to the left edge of the screen; if
heading in, we jump to 230. Otherwise, 210 is executed
which adds 1 to x% and checks to see if we are at the
right edge of the screen; if so, we reverse the in% flag
and jump back to 120. Otherwise, we do the opposite
which is to subtract 1 from x% and test to see if at the
left edge. Note that x movement is only concerned about
left and right edges and it’s only complication is the x%
variable controls beacon flashing indirectly (tested at
line 120). y% motion, on the other hand, is much more
tricky since it has to deal with swapping of sprite frames
for flame animation and landing. Note that the default
(ideal) state is to have the balloon descending and
heading ‘out’ (increasing x). It’s considered ideal
because it is the aforementioned ‘fall-through' code;
there are fewer statements.
Lines 300 and 310 are used when the sprite is ascending;
line 150 above brought us here because as% was = 1.
Since we are ascending, we subtract 1 from y%; we also
punch a new value into gravity that reduces it; you can
think of this as the balloon accelerating or the ‘pull’ of
the earth becoming less strong at higher altitudes. We
test for balloon ‘top’ (aka tip%) here as well and if so,
jump to 110; this is an uncommon occurrence happening

Now that we’ve illustrated what not to do, let's talk
about some best practices in the context of this month’s
program.
In order to get everything into 25 lines, we’ve had to
combine multiple statements onto a line, contradicting
cardinal rule #1 above.
Line 610 is probably the most egregious example of this
and line 100 is rather long as well.
But Line 100 is passable; it merely contains a series of
simple variable definition statements (constants on the
left and variables on the right, in this case). It's also
executed only once, and is easy to modify if we need to
tweak a setting. It's always a good idea to define all
variables early on. As bad as my old code (above) was, I
adopted this convention on line 480.
There are no REM statements in this month’s program
(as stored on the Foenix Marketplace) but we’ve inserted
some in the code on the right (pg. 27). An interesting
note about inline documentation; depending on the
version of BASIC, remarks can actually slow down
execution, but for programs that are not speed critical,
remarks are recommended.
The line numbering scheme that we used here is
intentional chosen in order to ‘block’ or group related
code within a given range, as if subroutines. This serves
two purposes: a) it leaves room for modification and
adding new lines and b) it makes it more readable,
assuming you've done this consistently and sensibly.
You might have noticed that the line numbering on the
BBS example on page 25 was at a strict 10 number
interval. The BASIC I used at the time had a handy
renumber command which does not exist in BASIC816.
But SuperBASIC, Simons’ BASIC, and later versions of
Commodore Basic (7.0) included such functions and
they took care of all referenced line numbers. My BBS
program was approximately 900 lines long; renumbering
by hand would be untenable.
With regard to line numbering, if you want to see
another example of what not to do, look back to issue
#1’s Commodore Balloon example on page 8 and the
footnote pointing out my sense of displeasure.
Ok, back to the Foenix Ballon program. A keen eye will
see that this program uses no GOSUB / RETURN pairs
and instead relies on favoring jumping only when
necessary. Notice that we order code blocks that ‘fall’ to
subsequent code blocks to satisfy instances that either
occur most, or benefit from higher performance. This is
a technique used in assembly language as well, favoring
falling-through versus branching and opting for
instructions which require fewer cycles (such as relative
branching) versus long jumps or JSR / RTS pairs that
put pressure on the stack.
In our case, we are favoring balloon decent and
movement from left to right; it makes logical sense since
gravity pulling is stronger than a hot air balloon trying to
escape it.

2709/2022

100 tip%=64:left%=58:bot%=448:right%=614:x%=58:y%=64:in%=0:be%=0:spr%=6
110 gr=80: as%=0: SPRITE 0, 0, &hB00000: SETCOLOR 0, 1, 0, 0, 0

120 IF x% MOD 40 = 0 THEN 500 : REM if x divisible by 40, do beacon

130 SPRITEAT 0, x%, y%
140 FOR n%=1 TO INT(gr): NEXT

150 IF as% = 1 THEN 300 : REM vertical direction block
160 y%=y%+1: gr= gr - 0.2: IF y%=bot% THEN 600 : REM descending
170 IF INT(RND()*10+1)*gr+10 < 75 THEN 130

200 IF in% = 1 THEN 230 : REM horizontal direction block

210 x%=x%+1: IF x% = right% THEN 270 : REM if moving right
220 GOTO 120

230 x%=x%-1: IF x% = left% THEN 260 : REM if moving left

240 GOTO 120
260 in%=0: GOTO 120
270 in%=1: GOTO 120

300 y%=y%-1: gr= (y%/10): IF y% = tip% THEN 110 : REM ascending

310 IF y% MOD 5 <> 0 THEN 200

400 SPRITE 0, 0, &hB00000+(spr%*1024): IF spr% < 11 THEN 420
410 spr%=5: SETCOLOR 0, 1, y%/2, 0, INT(RND()*250)+1
420 spr%=spr%+1: GOTO 200

500 IF be% = 1 THEN 520 : REM toggle beacon color

510 SETCOLOR 0, 73, 125, 164, 45: be%=1: GOTO 130
520 SETCOLOR 0, 73, 130, 33, 29 : be%=0: GOTO 130

600 as%=1:FOR de%=100 TO 600 : REM landing animation and launch
610 SPRITE0,0,&hB00000+INT(de%/100)*1024:NEXT: FOR de% = 1 TO 800:NEXT:GOTO 120

only once every several hundred pixels of movement
(y% moving from tip% + 1 to the bottom of screen and
back to the top of the screen with all of the x movement
between, animations, and all of the gr delays).
Line 110 is ‘reset time’, and essentially restarts the
program, albeit in a different x (horizontal) position.
There is something worth discussing at line 310. We are
here because we are ascending and have not yet reached
the top. So 4 out of 5 times (based on the MOD
function), we go to the x motion block; on the 5th
occurrence, we fall through to line 400.
Lines 400 - 420 flip to the next frame of the flame
animation sequence by executing the SPRITE command
with the new sprite address based on the spr% * 1024.
Finally we test to see if we are still within range of
sprites (< 11). If so, we add one to spr% for next time
and jump to the x motion block. If we were at 11, we
reset spr% to 5 (knowing that the code will increase it by
1, which is what we want) and do something fancy to
color #1 (which is usually black).
In this case, we use some calculations to plug in 1/2 the
value of y% in the RED color, always use 0 for GREEN,

and plug a random color between 1 and 250 into BLUE.
We also increase the sprite frame # and goto the x block
at line 200.
Lines 500 - 520 is the toggle beacon code and is similar
to lines 1020 - 1050 on page 23 of last month’s column.
Lines 600 - 610 is my favorite section. The balloon has
landed, so switch the as% flag to 1, and run the
animation delay loop on 610.
The FOR / NEXT loop serves two purposes: a) it’s just
enough of a delay between frames to be convincing and
b) this single statement within the loop calculates the
new address and does so within a SPRITE command.

SPRITE 0, 0, &hB00000 + INT (de% / 100) * 1024

The fact that we have access to functions like INT and
can divide a variable within parenthesis inside of the
function is useful; BASIC is a primitive language and
does not always afford such luxuries.
Think about our proposed DIM$ array approach
discussed on page 24 last month. That would have taken
a dozen lines of code. With the aid of 12K of sprites, we
traded memory for simplicity. It’s nice to have choices.

Program Listing - be sure to first execute the pre-requisite / setup commands detailed on page 28 below

Available on the
Foenix Marketplace

as “I03P27a.BAS”
(click here)

http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/
http://apps.emwhite.org/foenixmarketplace/

How to leverage .PAL files within your program - pre-req to the main program
In prior articles, we ‘setup’ the sprite with a stand-alone BASIC program that loads sprite data into memory, does a
MEMCOPY, and instantiates a palette using a few dozen DATA statements and SETCOLOR. Here, we will accomplish the
same task with the .PAL and a single SPRITESHOW command. These 5 lines are prerequisite to running the program
above and much more efficient than the approach we used in issues #1 and #2.

BLOAD “FBALLOO5.SPR”, &h100000-1 (note the minus one to skip 1 byte of metadata and align sprite data to 1MB boundary)
MEMCOPY LINEAR &h100000, 12288 TO LINEAR &hB00000, 12288 (12 sprites * 1024 = 12,288 bytes)
BLOAD “SPREDTV1.PAL”, &h100000 (we load the palette into the same space as above since the sprites are in VRAM by now)
MEMCOPY LINEAR &h100000, 1024 TO LINEAR &hAF2000, 1024 (move palette data; 1024 bytes; see pg. 22)
GRAPHICS 47: SPRITESHOW 0, 1 (set graphics mode and turn sprite #0 ’on’; lines 110 and 130 take care of the rest)

Beginner’s Corner says farewell for now…

Now that you are equipped with tools and examples to experiment with, I’d like to ask a question and a favor. Do you
have the get-up-and-go to try some of this for yourself. If so, I’d be interested in your results and learnings and also
invite you to write an article for a future issue of this newsletter and/or to share your work on Discord.
Of course this is a simple example and not quite Space Invaders, but it could be adapted to be something like it. (the
original Space Invaders had 55 aliens, one player, one player missile outstanding, one part time UFO, and 3 or 4 alien
missiles onscreen at any one time. Easily doable on a 64 sprite Foenix system).
On a related note, here are a few pics from a hot air balloon ride that my wife and I took, traversing 3,000 ft. elevation
across the Catalonian countryside, in early October. I need to share that landing is far more nerve racking than flying; our
pilot (Nico), a Frenchman and competition flyer, had over 2,000 flights under his belt, so that helped!

Next for this column and for Foenix Rising in general

Starting next month, I’ll be doing more actual development and spending less time writing and editing text for Foenix
Rising. Therefore, I am asking the community for thoughts and comments about this newsletter and most importantly,
for contributions (content) so we can carry this endeavor forward. Following this issue, I will be publishing one more
issue at year-end and then moving to a quarterly format. Beginner’s Corner will be back in 2023 with something new!

For me, I have three software development efforts that I will be starting later this month:

• The Gran Trak Foenix project mentioned on page 5 above
• A port of a Commodore 64 game developed by a 6502 hobbyist, based on Taito Space Invaders. I’ll be porting it to

65816 / C256 Foenix, and the F256 Jr., primarily as an academic exercise.
• A Unix curses based wrapper for vintage text based applications for the the A2560K, threatened previously

09/2022 28

me
Nico

(Pilot)

Actual shadow of our
balloon (superimposed

‘F’ for fun)

View of Barcelona - beyond the
mountains to the Southeast

F256 Jr.
Details of the rebranded rev. ‘B' released

Horizontal profile
L/R audio out

Relocated WiFi
SLIP BRIDGE

(optional)

‘conventional’ 9-pin
(but 3 button)

joystick headers
moved to front

(new) Expansion
connector

(details yet to be
released) (new) Boot mode

jumper (for
FLASH or RAM)

added

(new) SNES port
for breakout to

additional
controllers

(new) Optional ZIF
(zero insertion force)
sockets for SID ICs

(not included)

PS/2 mouse port
(moved to

header)

New F256 Jr.
branding

09/2022 29

The diagram above calls out noteworthy changes and new features since the revision ‘A’ development board.

What remains the same is the form factor (although this design is lower profile). If you missed the feature on
the C256 Jr. revision ‘A’ dev. board, have a look at Foenix Rising issue #2 (August), pgs. 26 - 28. With the
exception of the PS/2 mouse port being moved to the 4 pin MTA connector, every jumper and feature of the
dev. board applies to the production version, including the CPU footprint option.

Elsewhere, there has been significant progress on FPGA features, on Gadget’s kernel development efforts,
and a powerful new BASIC language called SuperBasic, written by Paul Scott Robson. A comprehensive
manual, written by Peter Weingartner (author of the A2560K MCP kernel) is also in the works. Download a
work-in-progress draft here. (see the github / resources section on pg. two for links to repos, otherwise)

The following pages discuss wiring in the context of my own industrial style mini-ITX case. See the
‘contest’ note in the puzzle section on page 16-17 for a chance to win a custom made case just like it!

The C256 Jr. dev board has transformed into the F256 Jr. product. The new revision is lower in profile
and has several additional hardware features. Best of all, software is evolving at a rapid rate. This month,

we’ll do a quick fly-over and then talk power and wiring (applicable to both Jr. boards)

https://github.com/pweingar/C256jrManual/blob/main/tex/c256jr_um.pdf

Cheese grater - many of the smaller ITX, and especially “picoPSU”
supplies, come pre-wired with a barrel connector. Feed it 12V DC
from a capable wall wart or modest bench supply and it will grace

your system board and light peripherals with power and
 signaling required to get off the ground quickly.

In my prototype case design, the back panel is barren,
with only a power jack present.

Scorpion - without the lucite cover, the profile of this hand-braked case
resembles the predatory arachnid. I opted for a hard on/off switch and nothing

but dual joysticks and the headphone jack up front. All of the onboard ports exit
to the right where it’s easy enough to get to, and in such a way that does not

clutter the precious space (a pet peeve) between my Jr. and monitor.

09/2022 30

“Hinged roof, covered” - in
this pic, joystick ports (front)

are not yet wired but the JTAG
interface is connected. The

left side is open for easy
access to the USB debug port
and the terasIC FPGA blaster.

Wiring a hard power switch
requires only two short leads

of wire from the switch to the
MTA connector. There is also
a header between the joystick

ports that can be wired to a
momentary switch if that is

more your style.

The LD A300W - Amazon [currently] $29.99 USD
Sold by “RGEEK”. Comes with the cables shown
(DB9 pin connector added to the picture for scale).

I do not recommend this for the Jr. It’s overkill.
This is an ideal power supply (well rated) if you
have one or more peripherals to power (SSD, floppy
or spinning disk). I believe the GEN X uses
something like it.

The cable braid (while it may be modified to be a
bit lighter) is too stiff and will clutter your case for
no good reason.

NO! Resist the temptation to use an
open frame industrial power supply.

ATX / ITX power is multi-voltage so
you will need something a bit ‘more’

robust than the garden variety 12V
DC adapter. The options detailed

below are inexpensive and easy to
procure. Power technology has

come a long way.

PicoPSU 90 - Amazon [currently] $29.95 USD - sold by “MITXPC”
Comes with the cables attached (I left the LD A300W in the picture to

show the size difference). This is what I used in my case.

The peripheral power cables are removable! All you really need is the
barrel connector which is hardwired (soldered) to the board.

Word of caution; these are commodity products so read the reviews
carefully and don’t be shocked if the item received is slightly different

than the picture you saw when you placed your order!

Pictures on the subsequent pages show a closer look at this power
supply and the wiring. Note that this has a 20 pin connector

(2 rows of 10). The Jr. board will accommodate either 20 or 24 pin.

Most ITX power supplies require separately purchased AC adapters of reasonable power. While a wall wart
style will work, I chose to invest in one of the Harbor Freight / Amazon sourced “Pyramid” supplies. They

are switched, can be easily serviced (recapped), and have pots to adjust voltage.
(also, you can use banana plugs which are fun and confuse friends and family)

09/2022 31

Power options (a few to speak of)

https://www.amazon.com/dp/B00316RGD4?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.amazon.com/dp/B071P3HMNK?psc=1&ref=ppx_yo2ov_dt_b_product_details

09/2022 32

(right) Closeup of the picoPSU. The only
wiring required is the pre-soldered black
and white cables on the upper-right which
loop around, then back to the far end
where the barrel connector is mounted
(see below, also). Notice the IEC
connector in the background turning its
back to the camera. (how rude!)

(left) Here, the serial header is wired to
a db9-to-db25 to provide the plumbing
for a USB powered WiFi modem for
some sweet 9600 baud BBS surfing.

One of the benefits to designing your
own enclosure is to accommodate off
the beaten path features. Most of the
store-bought cases are small footprint
but have an excess of height, which I
find cumbersome.

As depicted on pg. 29 and in last
month’s issue, the Jr. has all sorts of
headers and accommodations for
external status LEDs and audio and
DAC action, not to mention the VIA
driven 20 pin Commodore keyboard
connector. #MAKEITYOUROWN

(right) Simplified
view to clearly

show the internal
power cable and

on/off switch
wiring.

In this pic, you can
see the USB debug

cable (black) and
USB JTAG cable.

Monitor and
keyboard are not

connected and the
joystick ports are
not wired in this

picture.

Invest in
tools and
learn skills
like our
ancestors
did !!

smug

A real “page-

turner” :)

	Early Arcade issue

