
VTOC (volume table of contents) 

Twice the fun 
   (2x the content, same low price…)

In many parts of the world, August 
represents the gap between the 
heaviest vacation season of the year 
and school starting up again.

For those waiting on their Foenix to 
ship, this month will mark the long 
awaited arrival of machines including 
the first prod versions of the A2560K 
(featured in the last issue), and the 
C256 Jr. dev board, which we will 
spend some time on in this issue.

But what about the GEN X?  Issue 
#3 will focus on it; with a view from 
the inside of the updated revision.

The other news this month is the 
opening of the Foenix Marketplace. 
We’ll have a quick look at the ins & 
outs of how to find and download 
software for your Foenix machine.

And by request, Foenix Redux; a 
primer which covers the history, 
functional differences and 
commonalities between several of the 
Foenix sister systems.

We are also featuring an article by 
our first contributing author, Ernesto 
Contreras, who has provided a 
Calypsi install guide and a C library 
for graphics named VickyGraph.

Finally, check out part 1 of our retro 
feature on COMPUTE magazine.

Thank you as always for your interest 
and support.

-EMwhite

Junior - more than the sum of vintage parts 

Revision ‘A’ of the Foenix C256 Jr. dev board supports old-school 
Commodore keyboards and IEC Serial bus peripherals, has a banked 
RAM scheme, is 65C02 based, and is ‘just’ the perfect little package.  
We introduced it briefly last issue and will have a closer look this month. 

Resources, publisher’s notice, & this issue’s puzzle: Arcade word search 2

Tech Pioneers Crossword, solved (a reminder of their contributions) 3

Foenix Redux - A history lesson for the uninitiated 4 - 8

App review & first look: Ernesto’s “Foenix Sprite Editor” for C256 
platforms

9 - 11

Introduction to the Calypsi C compiler for Windows - a getting started 
and install guide written by Ernesto Contreras + a preview of 
“VickyGraph”

12 - 15

Quick take - A look at the Foenix Marketplace, now open 16 - 17

Beginner’s Corner #2: MEMCOPY and Color LUT discussion continued 18 - 25

Early look at the C256 Jr. - Photo feature: Jr. dev board arrival 26 - 28

Back page(s) - Foenix Rising issue #2 looks at COMPUTE magazine Issue 
#2.  We will kick off this multi-part series with a look at the origins of 
COMPUTE!, how it was formed, and what it meant to the explosive 
growth of the industry

29 - 32

Issue #2 August 2022

Featured Photo - C256 Jr. dev board rev A



git and URL Resource Directory

Updated each issue, this space will contain links to 
public facing Foenix related development efforts (useful 

to see how others have solved particular problems, to 
find docs or to see what is out there)

Foenix Rising is a user-supported, not-for-profit 
bimonthly hobbyist’s newsletter published in Murray 
Hill, New Jersey, USA supporting Foenix Retro Systems 
products with a focus on software development and 
related retro technologies.

Distribution: ~210-1

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’
Correspondance:

Lang https://github.com/paulscottrobson/basic02

Compiler https://github.com/hth313/Calypsi-m68k-Foenix

Compiler https://github.com/hth313/Calypsi-65816-Foenix

Env https://github.com/WartyMN/A2560-FoenixRetroOS

Env https://github.com/Trinity-11/FoenixIDE

Env https://github.com/paulscottrobson/f68-emulator

Game https://github.com/dtremblay/fraggy

Game https://github.com/dtremblay/c256-tetris

Kernel https://github.com/pweingar/FoenixMCP

Kernel https://github.com/ghackwrench/OpenKERNAL

Lang https://github.com/daschewie/FoenixBasic68k

Library https://github.com/econtrerasd/VickyGraph

Samp code https://github.com/noyen1973/C256-Foenix

Utility https://github.com/econtrerasd/Foenix-Sprite-Editor

Utility https://github.com/dtremblay/c256-vgm-player

Utility https://github.com/pweingar/FoenixMgr

Utility https://github.com/econtrerasd/playSong

Foenix Retro Systems Home Page
Foenix Discord Invite
Stefany Allaire Patreon Page
Stefany Allaire Twitter

Links to other Foenix Resources:

208/2022 

Find 19 18 single-word coin-op game titles.  I went 
ahead and circled my favorite from this list since: 
a) it’s actually a two-word title but I wanted to give this unique 

classic a mention 
b) I owe you one because I dropped the ball on last month’s 

puzzle (pg. 3) 

No PACMAN or ASTEROIDS above and many titles 
are staring right at you.  But keep in mind, your 
notion of ‘classic’ may differ from the puzzle-master 
depending on your age, experiences, or where you 
live.  We will dive briefly into unique features of a 
few of these in the next issue; there is something 
significant about many of these titles.  I wager that 
Stefany and Gadget will do well on this activity : ) 

Next month, we will visit the developer of a clean-
room version of a familiar classic which is well 
underway for C256 platforms (also applicable to the 
GEN X).  No spoilers here but jump on Discord and 
you’ll read some posts about it along with a .hex 
working demo that you can get your hands on as I 
write this.  I just ran it and it is spectacular !! 

Speaking of classics, in the September/October 
timeframe, we will dive in and recreate a portion of a 
pre classic-era arcade gem, Atari Tank (1974);  ‘Tank’ 
is a precursor to an actual classic, Battle Zone (1980). 

‘Tank’ had cabinet-rumbling sound effects that Atari 
reused in its 3D vector graphics brethren.  We will 
model the sound on a Moog Model 15, on discreet 
HW, and then attempt to recreate them using 
“Foenix sound”!!

bold = newly added

https://github.com/paulscottrobson/basic02
https://github.com/hth313/Calypsi-m68k-Foenix
https://github.com/hth313/Calypsi-65816-Foenix
https://github.com/WartyMN/A2560-FoenixRetroOS
https://github.com/Trinity-11/FoenixIDE
https://github.com/paulscottrobson/f68-emulator
https://github.com/dtremblay/fraggy
https://github.com/dtremblay/c256-tetris
https://github.com/pweingar/FoenixMCP
https://github.com/ghackwrench/OpenKERNAL
https://github.com/daschewie/FoenixBasic68k
https://github.com/econtrerasd/VickyGraph
https://github.com/noyen1973/C256-Foenix
https://github.com/econtrerasd/Foenix-Sprite-Editor
https://github.com/dtremblay/c256-vgm-player
https://github.com/pweingar/FoenixMgr
https://github.com/econtrerasd/playSong
http://c256foenix.com
https://discord.gg/gzEQSKagN5
https://www.patreon.com/bePatron?u=56480700&redirect_uri=https://c256foenix.com/?v=b174a31115af&utm_medium=widget
https://twitter.com/StefanyAllaire/status/1560776205716008961


1A:  Mario’s Nintendo father, credited for saving gaming 

4A:  Chuck E. Cheese founder and pong daddy 

5A:  First name shared with Peanuts Lucy’s brother 

7A:  _ _ _ _ _  2049’er and Lorraine founder 

9A:  Lady Ada’s (not Limor Fried) surname 

10A: Bell Labs Lang gifter and National Medal of Technology recipient 

11A: Cubist inventor 
of W3 (suppress 
the hyphen, if 
there is one : ) 

2D: www HoF 
member and 
NCSA 
wunderkind 

3D: Macintosh GUI 
King and 
Hypercard 
inventor 

5D: “Jack Attack”, 
known to 
market to the 
masses 

6D: Knighted Clive partnered with a US watch company to introduce a 
doorstop 

8D: D-list’ partner and Sharks ‘super-fan’ 

12D: Responsible for making ‘Ed’ visible.  Co-founded a Unix 
workstation giant 

13D: Root domain admin, SMTP RFC editor, and ‘g-d of the internet’

1A 4A 5A 7A

9A

10A

11A

2D

3D

5D

6D

8D 12D 13D

308/2022 

It’s true, Bill Joy’s name (12 down) is spelled “J-O-Y”, and not “J-T-Y”.  The Puzzle above was unsolvable as printed in issue #1.  I’m sorry …

*click* on pictures for brief, but interesting curated 
articles for “a reminder of their contributions”

p  u  z  z  l  e      s  o  l  u  t  i  o  n

https://www.ibiblio.org/pioneers/andreesen.html
https://ideas.ted.com/the-wisdom-of-linus-torvalds/
https://www.internethalloffame.org//blog/2012/10/15/remembering-jon-postel-%E2%80%94-and-day-he-redirected-internet
https://www.forbes.com/sites/marcochiappetta/2020/09/10/rare-recording-of-jay-miner-circuit-design-pioneer-and-father-of-the-amiga-surfaces/?sh=70271870227a
https://www.folklore.org/StoryView.py?project=Macintosh&story=Joining_Apple_Computer
https://engineering.berkeley.edu/steve-wozniak-inventor-and-apple-co-founder/
https://www.npr.org/sections/alltechconsidered/2015/06/19/415568892/q-a-shigeru-miyamoto-on-the-origins-of-nintendos-famous-characters
https://www.fastcompany.com/3068135/the-untold-story-of-atari-founder-nolan-bushnells-visionary-1980s-tech-incubator
https://techland.time.com/2012/04/09/improbable-pc-pioneer-commodores-jack-tramiel-1928-2011/
https://www.computerhistory.org/babbage/adalovelace/
https://www.theregister.com/Print/2003/09/11/bill_joys_greatest_gift/
https://lemelson.mit.edu/resources/dennis-ritchie
https://www.fastcompany.com/90680349/clive-sinclair-obituary
https://www.scientificamerican.com/article/the-mind-behind-the-web/?gclid=Cj0KCQjw8uOWBhDXARIsAOxKJ2ERIyhu3c56F5O17L2erNJ9hLUqvMt_4WV-mjgEBLk6okLzHxwr7YwaArSYEALw_wcB


I exchanged a few messages with a retro enthusiast from Thunder Bay, Ontario recently; he had interest in the history 
of Foenix.  Where did it come from?  What differentiates the products from one other?  What is available now? 
Admittedly, I take for granted the fact that some percentage of the population have been following the platform closely 
since the early days of the FMX, but a far larger group is just getting onboard and information, well… the internet.… 
If you’ll bear with me, I’d like to rewind the clock some four or five years and trace the origins of this platform, discuss 
some similarities and differences, and then quickly catch up to the currently shipping and soon-to-ship products 
including the recently announced C256 Jr. 
I had planned to depict a comprehensive memory map in ‘this’ space this month, but with the Rev. 2 dev platform of 
the C256 Jr. still taking shape, I’ve opted to put that discussion off a month and instead, will draw upon some of the 
text I complied for the VCF East event this past Spring for a more worthy cause.  This will be repeat for some, but new 
to many. 

The Beginning: Foenix Music eXtension (FMX) 

The beginnings of Foenix can be traced to a conversation between Stefany Allaire and David Murray (The 8-bit guy) 
that occurred at a Portland retro conference. The story has been told many times but the short version is that a 
discussion about collaborating led to different paths which led to Stefany going out on her own to begin design and to 
build an operation that she would own end-to-end. 
Here is an early video that begins with ‘challenge accepted' then goes into the first of a few subsequent revisions of the 
first product (the C256) which eventually became the FMX. 

The original FMX Foenix (with roots in the C256) was designed, built, and improved upon in nearly a dozen iterations, 
then shipped to early adopters culminating in the GA release (see yellow dashed area at the bottom of the pic above).  
With a concentration on graphics and music, the Foenix platform offers retro enthusiasts a chance to get close to the 
hardware while enjoying a step-up in performance compared to the 1 or 2 MHz. systems that many retro enthusiasts 
hold dear. To paraphrase the sentiment behind Stefany's philosophy, she seeks to recreate the experience that many of 
us started with decades ago when we first switched on our 6502 based home computer and were faced with a blinking 
"READY." prompt and nothing more than a reference manual with a few sample programs to key in. 
All of the Foenix products are produced in Western British Columbia, Canada. Stefany designs the hardware (in many 
cases, 6 layer boards), develops the FPGA code, integrates classic ICs, selects components and designs and prints 
enclosures, solders and assembles, and ships worldwide. 

Foenix Redux 
A not-so-brief history lesson for the uninitiated 

408/2022 

C256 Foenix Family photo (of sorts) 

• C256U+ w/EXP-C100 eSID expansion card 
• GEN X PB (Pizza Box) prototype in black and 

purple (in front of monitor) 
• FMX C4B in original black 3D printed case 

with transparent windows.  (this machine is 
treasured by some but in most cases, are 
sadly sitting on shelves, collecting dust)  

• “picture" of an early PDIP based version of the 
FMX (see larger pic below) 

• (just below the U+) 1/2 scale FMX (C4A)

GEN X 
PB

C256 
U+

FMX C4B

FMX 
C4A

C256

FMX

https://www.youtube.com/watch?v=fwFzvEkZC_4


Of course the operating environment, kernel, development tools, utilities, games, and demos are coming from all 
corners of the world and interest and adoption is increasing on a week-by-week basis. Collaborators Peter J. 
Weingartner and Daniel Tremblay have been working hand-in-hand with Stefany for years, and have built various 
kernels, virtual environments, and other software.  Many more have joined recently and are producing software 
including highly interactive and well produced games for the community to enjoy. 

The machines in the middle: The Foenix C256U / U+ lead to the A2560 family 

The everything-and-the-kitchen-sink feature list of the Foenix FMX was the best of times, and units were finally 
shipping in quantity; then COVID induced supply chain issues struck. 
The FMX leveraged a diverse set of curated ICs including multiple ALTERA FPGAs and audio ICs that were suddenly 
difficult to find or prohibitively expensive. 
In response, Stefany spun-up a new lower-cost "User" model, named the 'C256U'.  The 'U' only required a single 
FPGA, did not leverage the SuperIO IC, had a limited set of physical Sound ICs, did not have MIDI, and had other 
limitations.  But it enabled Stefany to keep shipping product and to put her technology in the hands of more people. 

The C256U (pictured to the left) was also 
significant because it opened the door for use of 
the 20 MHz Motorola MC68SEC000 
microprocessor (next page). 
This was the first time a non MOS-lineage CPU 
was used in a Foenix design and at the time, it 
seemed like an interesting product, attracting a 
new group of retro enthusiasts to Foenix. 
Coined the A2560 series, the ‘U’ version (see pic 
on pg. 6) would lead to an integrated Keyboard 
‘K’, an A2560X desktop version with a single 
68040, and dual CPU switchable machine which 
could run a WDC 65816 and have a Motorola 
CPU (or Intel) footprint onboard.  But we are 
getting ahead of ourselves; one step at a time. 

508/2022 

Picture of an early FMX board. Note the 40 pin 
PDIP based 65816 near the expansion connector 
on the right.  All other boards*, through the new 

GEN X utilize the QFP

This poster was created for the April 2022 VCF 
East conference and details features of the 'early 

adopter' FMX version C4A

C256U - FMX heritage, WDC 65816 CPU @ 14 MHz. 
reduced chip count and lower cost 

PDIP 
CPU 

(rare : )

WDC 
QFP 

65C816

* Rev A of the C256 Jr. dev board features both CPU footprints (the QFP pads are under the DIP socket) see pgs. 26-29 

C256U

A2560U



Both ‘U’ versions (C256 and A2560) were 
available at two price points; the 'U' had 2MB of 
system RAM, and the slightly more expensive 
'U+' doubled the memory to 4MB. 
To round out these offerings, a multi-piece 3D 
printed case (below) was designed, featuring 
register addressable LED lighting. 
While many cases were sold, vendor 
manufacturing delays caused a backlog and as a 
result, many SBC (single-board-computer) 
versions of the Foenix ‘U' exist in the wild, 
including the C256U+ that I use for production 
and development of this newsletter (below, left). 

C256 Family Operating Environment (aka OS) 

All C256 family machines produced thus far 
‘boot’ into BASIC816, a built-for-purpose BASIC 
language/environment that included a toolbox of 
graphics and memory access/DMA shims, a 
machine language monitor, and several ‘disk' 
commands for accessing either the SD card (all 
models), or the built in disk, for machines 
equipped. 
Similar to early Commodore products, the C256 
machines allow ‘open editing’ of BASIC code, 
meaning that you can move around the screen 
unencumbered up to the four corners of the 
screen. 
Upon pressing enter, the text line under the cursor 
is interpreted in immediate mode, or ‘entered’ / 
tokenized, if beginning with a line number. 
Though token based, programs saved by 
BASIC816 are written in clear text; handy for 
shuttling or editing on other platforms, including 
the IDE.  This comes at the cost of processing 
time during load. 
As full featured as it is (especially for graphics), 

BASIC816 is otherwise sparse.  There are no ‘modern’ BASIC features (such as line renumbering) and no sound/music 
commands.  And there are a few peculiarities to manage.  But it works and as you’ll see in the Sprite Editor review 
below, it’s a perfectly feasible operating environment for lightweight work which is all that you can really expect from 
BASIC.  Having said this, other versions of BASIC are under development and likely to be ported to other platforms; 
more to come here.  But what about the kernel?  We will need to save that for another time. 

608/2022 

My own C256U+ paired with a custom WASD PS/2 
Keyboard styled to match the A2560K keyboard

Motorola 
68K

A2560U - sister to the C256U but leveraging a 
Motorola MC68SEC000 @ 20 MHz.



Shipping Today: The Foenix A2560K - Integrated Keyboard Model 

With the A2560U and U+ nearly complete, Stefany took an ambitious step forward to continue work on an integrated 
keyboard-based Foenix developed around one of her favorite processors, the Motorola 68040.  Announced and shown 
in prototype form (over Zoom) at the October VCF East show in 2021, the A2560K has shipped its first 3 hand built 
models and the next four P&P built machines (see last issue), with a few dozen more presale units being assembled 
now. 
The A2560K was featured in last month’s newsletter both in pictures and in text, and we interviewed Peter Weingartner, 
MCP Kernel developer.  So head to the Foenix Marketplace and download issue #1 if you have not yet done so.  For a 
video tour, have a look at Peter’s overview video.  It is very well done. 

A2560 Operating Environment (the MCP v1.0 release) 

Unlike the C256 systems discussed thus far, A2560 machines boot to a traditional command-line interface with a 
handful of embedded commands for manipulating devices, for interrogating memory, and to test aspects of hardware.  
There is also a micro-kernel interface which provides ~70 C library functions which can also be accessed via MC68000 
assembly Trap#15 calls.  An example of a C function is:  sys_txt_set_color(0, 6, 0); which sets the cyan text 
against a black background on screen #0.  Have a look at the github hosted repo here -> MCP for code and a .pdf doc. 
MCP’s shell also has a disassembler, PEEK and POKE commands (for 8, 16 or 32 bit values), and the ability to type a 
file to the screen, among other functions.  In short, it's a combination of some of what Apple and Commodore offered, 
some of what CP/M and early DOS provided, and support for Foenix specific features. 

Here is a selection of some of the available commands; you’ll probably recognize many of them:  
CALL {addr} CD CLS COPY DUMP DIR DISKREAD {sector} 
GETTICKS LOAD POKE16 PWD REN SHOWINT TEST {feature} 

Just for fun, issuing “POKE32 $fec0:0008 $00A0:00A0” on a A2560K will change the power LED from green to a 
lovely lurid color.  Blue more your thing?  Try an argument of $0000:00A0.  As Peter explained when interviewed in 
Issue #1, the intent of MCP was to strip away the layers and only provide the necessary primitives needed to manage 
the machine at a high level (or a low level, as the case may be). 
And similar to DOS or CP/M if you want to add a BASIC interpreter or a Text Editor, just drop the binary onto disk and 
MCP will search PATH to consider other “commands”. 
The A2560U, on the other hand, runs the predecessor to MCP (also developed by Peter), but MCP is being ported to the 
platform.  This has not gotten in the way of software development or the availability of apps.  The A2560U has an Atari 
ST (TOS) environment in active development, a MIDI note proof of concept, a BASIC language interpreter (and other 
languages), and a text editor with context highlighting and IDE capabilities, with more to come.  There is also a virtual/
IDE environment.  With the first four production units shipped and received, I expect these pages to have much more 
A2560 content by the end-of-year and our fingers are crossed for a good Christmas Demo. 

red (160) blue (160)

708/2022 

Stefany describes the A2560K as "the computer I designed for myself", 
and it shows. It embodies features of earlier Foenix systems, design 
elements from prior generation products, and a look forward; with new 
capabilities and a rugged look.  

In addition to a densely packed audio section footprint (physical ICs plus 
several FPGA based instances), the 'K' includes DIN based MIDI IN/OUT, 
the SuperIO IC with full featured serial ports, a parallel port, floppy and 
hard disk, RJ45 based Ethernet, and the next iteration of VICKY (video) 
including native dual-head video output. 

All of this is supported by 64 MBytes of SDRAM, 4 MBytes of static RAM 
and an additional 4 MBytes of FLASH stuffed into a compact and 
attractive case inspired by the Amiga A600 and its ANSI keyboard, 
released in 1992.

A2560K

https://www.youtube.com/watch?v=lRzWDm6-uHE&t=349s
https://github.com/pweingar/FoenixMCP


Shipping soon: The C256 GEN X Family 

The GEN X is a multi-CPU capable, new-retro computer that ships with the WDC 65816 component-set embedded on 
the main board.  This means the GEN X is ready to run the growing library of FMX and C256U/U+ programs. 

And with the addition of a second processor (such as a MC680x0 
processor or an Intel i486/DX2), you can leverage a secondary power-up 
mode and transform your GEN X into a different machine, with a different 
OS and kernel, but with the same hardware capabilities and I/O including 
MIDI. 
The GEN X is available in 3 form factors, beginning with the ‘Cube’, an 
11" x 11" x 11" enclosure. The Cube comes complete with a floppy drive, 
a hard disk, an internal power supply, and partially populated audio ICs.  
Similar to many of the other Foenix machines, there are also two sockets 
for SIM ICs which may be either 9V or 12V and can be bound to right, 
left, or a common audio channel. 
Importantly, every GEN X 
model has two FPGA based 
Gideon SID instances in 
addition to a plethora of 
Yamaha TMS support which 
means that apps developed to 
use the onboard (emulated) 
sound will work across the 
range or systems down to the 
PB and likely, backwards to 
the C256U and FMX. 

Next up is the 'Lunch Box' (LB) shown in the picture to the left. This picture 
was from the first public showing of the LB and you’ll notice that it shares a 
lot with the Cube, occupying the same 11" x 11" footprint, except 1/2 of the 
height, at 5.5” tall. Absent is the floppy and some of the physical audio ICs, 
but otherwise, it is functionally identical to the Cube, same ports, memory, 
processor options, and build in amplifier, speakers, and controls. 
Finally, there is the 'Pizza Box' (PB). Similar to the Lunch Box, except less 
expensive still, and smaller (< 2.5" tall). You'll notice that the distinctive 
stereo speakers are no longer onboard, nor are direct connect NES/SNES 
game ports (however, the Pizza Box does host 4 x Atari Joystick connections, two of which can host analog paddles or 
an external break-out box for NES / SNES controller connectivity). 

Shipping next: The A2560X Family 

The A2560X, briefly mentioned above, looks and smells like a GEN X, however, is a single CPU machine and is 
powered by a 68040 @ 25 Mhz.  It leverages the GEN X circuit board and shares input/output specifications, but a 

different population of ICs and is absent some of the unnecessary supporting 
infrastructure.  At a high level, it wouldn’t be incorrect to consider the A2560X a 

desktop or workstation version of the A2560K, but there are some differences. 
The A2560X is in pre-order phase and is expected to ship in the next few months. 

In Summary: Shipping and soon-to-ship products 

There you have it, a brief but high-level history of Foenix Retro Systems.  If you have 
the time and interest, there are literally dozens of hours of video available beginning 
with an early CRX presentation, live streaming events and updates, not to mention 
handful of seminars from Vintage Computer Federation (VCF) shows. 

Head over to the C256Foenix.com home page for the latest information and see pgs. 
26-28 below for a closer look at the C256 Jr. project. 

Click here to head straight to the full specifications page. 

808/2022 

C256 
GENX

A2560X

http://C256Foenix.com
https://c256foenix.com/products/?v=7516fd43adaa


App Review and First Look 
Ernesto Contreras “Foenix Sprite Editor” for C256 platforms 

The first installment of Beginner’s Corner recalled the 
“Up, up, and away” example from the original 
Commodore 64 User’s Guide and passing reference was 
made to the old school way to design Sprites: graph 
paper. 
In the early 80's the word “Sprite” was a new term but it 
didn’t take long for computing journals to publish tools 
which allowed the user to move the cursor around a field 
of cells, one character space per pixel, to define the C64's 
24 pixel by 21 pixel Sprite.  Watching your Sprite take 
shape at high resolution to the right side of the screen was 
magical, and some of the editors provided functionality to 
double-size, bit shift, and x/y mirror. 
The very last memory I have of my original Commodore 
64 was selling it to my High School friend Jerry; it was 
complete with my 1541 Flash! equipped drive, an 
IEEE-488 interface and SFD-1001 disk drive, a standard 
RS-232 user port interface, the works.  And the last 
program I demoed for him was not a game or EasyScript, 
but a Sprite editor; and I remember flying around the 
screen and toggling pixels on-and-off, amazing my 
friend.  And yes, I regret selling it, to this day! 
As mentioned last month, the first time I felt productive 
on this platform (a C256U+) was using the Foenix Sprite 
Editor, the subject of this column. 
Ernesto developed his 
editor in BASIC816 
along with a few 
passages of machine 
language to optimize 
some of the functions 
in need of speed.  He 
also pre-loaded a very 
useful color look-up-
table (LUT), borrowed 
from from 
LOSPEC. 
Load the app 
with a LOAD 
“SPREDIT.BAS” and when 
complete, type “run”; 
you’ll notice a quick 
video mode shift, 
followed by a grid 
rendering  reminiscent of 
the old HES GridRunner game (but cooler). 
Everything is managed and edited from a single screen.  
Notice (clockwise): (a) the color palette on the left, (b) 
the Sprite editing field, (c) the rendered Sprite on the 
right, (d) palette load/save and custom color sliders.  
Below editing field is (e) a set of Sprite editing tools, and 
finally, (f) main program functions for (top to bottom) 
saving/loading, adding/deleting, moving to next/previous 

Sprite, and an ‘exit' to BASIC.  A status line above 
indicates the Sprite number being edited (from 1 to 255).  
I’ve highlighted two areas (dotted regions) which show 
the selected color and the copy/paste buffer contents, 
used for copying a Sprite to a new workspace.  This is 
useful when wanting to try alternate coloring schemes or 
editing multiple frames for animation. 
How to use: Use the mouse to select/deselect pixels and 
colors from the choice of 255 (plus transparent) on the 
left.  You may also custom ‘mix’ your own colors via 
positioning a set of three horizontal sliders at the bottom 
of the screen.  Doing so will adjust the RGB range from 
0..255 and you'll see the new color take its place in the 
palette selector and in the large annotated rectangle box 
just to the left of the tools. 
One enhancement that I would like to see is for the color 
bars to ‘jump’ to the value of the selected color; doing so 
would allow the user to easily tweak a hue. 
Saving Sprites for later use is as simple as clicking the 
picture of the disk with the left-facing green arrow, and 
providing a filename.  All Sprite data is written to a 
single binary file, with 1024 bytes per Sprite definition + 
one leading byte at the start of file representing the 
number of Sprites within.  Note that this is not a PGX or 
PGZ file so you will need to ‘load’ the file into system 

memory at a given 
address before moving to 
VRAM (will will discuss 
this in Beginner’s Corner 
on pg. 25 below). 
What I like most about 
the editor: It is easy to 
use, mouse driven, comes 
loaded with a great 
palette of colors which 
reduces toil, allowing the 

user to get on 
with the 
creative 
process.  It's 

also very easy to 
use the resulting data 
either with a handful of 
BASIC816 commands 
(see last and this issue's 

“Beginner’s Corner”) or 
within your own assembly language routines. 
What's missing? A pixel shift (moving the whole field or 
a selected region bitwise) in the primary directions would 
be nice, especially useful when duplicating Sprites for 
animation.  A smooth, or n (9 or 18) degree rotate would 
be icing on the cake.  (Ernesto does provide a 180’ x and 
y flip and it works well).  I may be pitching in to help 
develop some of these enhancements in future. 

908/2022 

Selected 
Palette color Copy/paste 

buffer

https://lospec.com/palette-list/duel


What I really like most about the editor?  The fact that 
it is written it BASIC and is therefore easily extensible 
for practical use or to learn from.  Also, Ernesto has 
inadvertently set a standard on how to organize Sprite 
and color LUT (palette) data, including a file format for 
multiple Sprites.  If you have a look at the “BUG13.SPR” 
file included within the “BUGDEMO” distribution (on the 
Foenix Marketplace), you’ll begin to realize that this is 
the beginning of a growing library of content. 
An alternative?:  There are many possible alternatives 
(not counting graph paper) to edit and manage Sprites 
and Color LUTs, and they include familiar titles such as 
GIMP and Unity and lesser known titles such as Piskel, 
Aesprite,  LOSPEC, Gamemaker, PLAYCANVAS, and 
more. 
Many have video tutorials specifically for Sprite use 
(some are generic images editors), most are free, and 
some are open source and go to great lengths to make the 
source code available such as this GNU example. 
Ultimately, you will need to get your Sprite data into 
binary format and onto a Foenix platform.  You may opt 
to dive into each tool to learn about its native format, 
explore conversion routines that manage color palette 
export as well, then write some Python code or maybe 
some shell scripts.  Or (punchline), use this native tool, 
and spend more time working ‘on platform’ to make the 
world a better place. 

Related topics and further discussion:  In last month's 
issue, we mentioned leveraging Sprites for non-movable 
objects and at the time, we were referring to the use of 
Sprites for buttons on a tool bar.  The thought was that a 
clicked-upon control could easily be animated to appear 
‘pressed’ or in a shadow.  Another approach could be to 
render (move) a single Sprite down and to the right a few 
pixels, complete with sound effect or better, a serial port 
connected haptic clicker hack! 
If there is one thing, aside from the obvious ‘everything' 
that Foenix platforms improve upon, it’s the number of 
Sprites and amount of memory available for user 
programs and data.  So it is not much of a stretch to 
consider using Sprites within utility apps or lightweight 
educational games; and next month we will do just that. 
Something else stumbled upon between publishing the 
prior issue and starting to write this issue was a happy 
accident brought about while troubleshooting the FPGA 
code that I had loaded into my machine that I suspected 
was causing problems (it was).  I actually had two 
somewhat nonstandard pieces of code in my machine; a 
newer (and less stable) FPGA load that supported the 
EXP-C100-ESID (dual SID and CAT5 Ethernet 
expansion card), and a custom build of a kernel that 
supported a UDP listener. 
It had been months since I used this hardware and upon 
trying a new WASD keyboard, I noticed some odd 
behavior during editing BASIC816 programs.  For a 

while I lived with it.  But ultimately (while using the 
Sprite Editor) I experienced a lockup. 
To my chagrin, I had invested a good hour or two editing 
Sprites and failed to save them, but I had a bright idea !! 
All Foenix platforms come equipped with a USB debug 
host interface which can be used for content (.hex or 
binary) push, to command the CPU, or in this case, to 
interrogate memory. 
You see, regardless of the state of the CPU, the USB port 
combined with FPGA code is autonomous and has access 
to memory; so I investigated pulling a region of memory 
(observed in Ernesto’s BASIC code) that I thought might 
have the 1K Sprite segments I was after. 
It didn't work.  As it turns out, VRAM (Video) is a 
different block of memory and is not available to the 
debug interface; but in poking around, I stumbled upon 
something interesting that I hadn’t noticed prior.  Have a 
look and see if you see what I see? 

No, it’s not a kidney-bean, these are 
tool icons from Ernesto’s editor and 
specifically, shape definitions (packed 
into the native 32 x 32 pixel Sprite). 
Load the file “ICONS.SPR” into the Sprite Editor to see for 
yourself.  You wouldn't be incorrect to call these ‘tiles’ 
but this has nothing to do with VICKY II tiles. 

Now consider the example to the left 
which reminded me of the moonfish 

segment in Disney’s 
Finding Nemo 
where a school of 
fish self-
organize (as if 

pixels) to form an 
arrow, or in this case, where a group of 
7’s, 4’s, 2’s, and a single unprintable 
character (hex $00 or “ . ” 
above) defines the 3D arrow 
on the right (Sprite Editor - 
“Next Sprite” button). 

1008/2022 

This is the output of a  xxd -c 32 {filename} 
executed at the bash shell of a MacOS terminal.  The 
significance of the “-c 32” represents what might be 
referred to as the 'stride' of the image aka 32 bytes (1 
byte per pixel) Combined with the precise starting 
address, we see a clear image instead of indiscernible 
garbage (the worst kind of garbage).  More on ‘stride’ 
in Beginner’s Corner further down in this newsletter).

$34 aka ASCII ‘4’ 
aka medium green

The lone $00 
= transparent

https://www.gimp.org/
https://docs.unity3d.com/Manual/SpriteEditor.html
https://www.piskelapp.com/
https://www.aseprite.org/
https://lospec.com/pixel-editor/
https://gamemaker.io/en/tutorials/sprite-editor
https://developer.playcanvas.com/en/user-manual/2D/sprite-editor/
https://gitlab.gnome.org/GNOME/gimp


It takes more than a bitmap definition to make this look 
good.  You also need the correct color palette.  
Otherwise, color $37 (aka #55 aka ASCII ‘7’) and color 
$32 might default to black, while $34 is set to brown; 
sounds innocuous enough, but on a black background, 
this would look more like an angry eyebrow. 
So don't forget the color palette; you can either load, run, 
and exit Ernesto’s Sprite Editor; or load and run last 
issue’s “I01P11A.BAS”. 
The code excerpt below was borrowed from Ernesto's 
Editor.  It loads his Sprite definition file, and displays the 
16 x 16 bit green arrow portion of the 32 x 32 sprite. 

 After execution, you'll need to find a blank line to type 
“GRAPHICS 47” on in order to get back to a usable text 
screen; the “+512”on line 100 pushes VICKY II into 320 
x 240 (double pixel) mode where things get messy fast. 
Thus concludes another use of the Sprite Editor: for 
creating and managing bitmap content that has nothing 
to do with movable objects. 
But wait, there's more!  Add the following two lines: 

3505 FOR x%= 1 to 200 
3630 NEXT 

… and then add a “+ x%” to line 3610 so it looks like: 

3610 IPOS%= &hB00000 + (SY%*15) *320 + x% 

… and run it again.  You should see the following: 
Pretty cool, huh?  Recall 
that this is NOT a sprite.  
‘Yes’, Ernesto used his 
Sprite Editor to create the 
arrow; ‘Yes’, we loaded it 
into memory, then to 
VRAM as if we were going 
to instantiate a Sprite; and 
‘yes’, we are using the same 

color look-up-table (aka 
palette) used for Sprites, but we are, in fact, redrawing or 
re-stamping the shape 200 times to move left to right. 
Important to point out that it appears to be moving 
smoothly, cleanly, and not ‘smearing’.  And all of this is 
true.  But we’ve taken zero care to make this happen, yet 
it is behaving like a Sprite. 
So what’s going on?  The leftmost column of pixels 
contains hex $00 which, based on LUT rules is 
‘transparent’.  This is the single reserved location in each 
LUT that may not contain color.  We could have chosen 
color $01 which (in Ernesto’s table) is legit black; but 

doing so would paint a thick black stripe across a screen 
that might otherwise tarnish a lovely bitmap image, or 
soil a sky blue background.  This is better. 
Said another way, the bitmap shape, due to the way that 
it leverages colors, cleans up after itself.  This should 
remind Apple II fans of working with Shape Tables. 
One famous monochrome Apple II bitmap graphics trick 
is to exclusive-or (the 6502 opcode is XOR) a shape pixel 
with a background resulting in an ‘only’-or situation.  If 
both pixels are ‘on’, a reverse bit will result. 
Also worth mentioning, that this is a fair amount of work 
for a lone CPU; far more than increasing a small number 
of registers for Sprite movement.  Early 80’s computers 
often had a single, built-for-purpose IC for ‘assist’ (e.g. 
the VIC-II).  The CPU was otherwise lonely.  Foenix 
platforms have VICKY for graphics, sound, and other 
functions, not the least of which is a DMA engine. 
Every iteration of the loop (all 200 of them), not only 
costs cycles in BASIC interpretation of the FOR / NEXT 
loop itself, but also computational time to solve the math 
equation on line 3610 and also the MEMCOPY (and the 
cycles it requires) on line 3620.  But at 14 Mhz, this is 
faster than a Commodore 64 moved a single Sprite in 
BASIC, so at least we have that going for us : ) 
Something else to try.  Let’s modify this code slightly to 
discount the left column of pixel and see what happens.  
We can do this by modifying a single statement: 

Now run this again and see the following: 

There’s the smear we 
referred to previously. 
One last trick; let’s push this 
out 4 more pixels.  You can 
probably guess what type of 
effect we are going after 
here. 

That's all for now.  Next 
month, we will leverage a 
few of these techniques in a 
simple game. 
We will also discuss a few 
Sprite Editor enhancements 
then see if we can actually 
code them.  Should be fun !! 

1108/2022 

100 GRAPHICS 47+512 
110 BITMAP 0, 1, 0, &hB00000 : SY%=5 
120 SETBORDER 0:CLRBITMAP 0 
3510 BLOAD “ICONS.SPR”, &h100000-1 
3610 IPOS%= &hB00000 + (SY%*15) *320 
3620 MEMCOPY RECT &h100400,16,16,32 TO RECT IPOS%,16,16,320 

3620 MEMCOPY RECT &h100401,15,16,32 TO RECT IPOS%,15,16,320 

3620 MEMCOPY RECT &h100405,11,16,32 TO RECT IPOS%,11,16,320

✦ We dive deeper into MEMCOPY and related graphics 
topics in Beginner’s Corner on pgs. 18-25 below.  



Introduction 

So you own of a Foenix FMX, Foenix U+, or a Gen X?, 
first of all Congratulations on your acquisition!, this is an 
exciting retro computer that is just waiting to be explored 
and exploited!  

As a new user your first exploration of the capabilities will 
be with the default BASIC included in the machine, but as 
exciting as BASIC is, some programs and specially games 
need a bit more Oomph to really shine, so what we need is 
a compiler to access the real power of the machine.  

There are a few available compilers for this processor (for 
example 64Tassfor assembler or the WDC provided 
Compiler for C), but in this guide we are going to 
concentrate on how to install the Calypsi WDC 65816 
Compiler & Tool Chain on Windows and do a quick test to 
compile the demo Hello World program. 

Why Choose Calypsi?  

Calypsi is not one, but a series of C and assembly language 
cross compilers (there are versions available for the MOS 
6502 / WDC 65816 and Motorola 68000) & tool chains 
aimed towards the retro and hobby communities by Håkan 
Thörngren.  

Its targets are conveniently matching the current offering 
of processors of the Foenix Series of computers by Stefany 
Allaire, so by learning Calypsi you could have one 
compiler & toolchain that targets the complete series.  

Other highlights of the compiler’s features:  

• ISO C 99 compiler. This is a freestanding 
implementation with many features you will 
typically find in a hosted compiler.  

• Fully re-entrant code model.  
• Support for all integer types up to 64 bits long 

long.  
• Floating point supported (32 and 64 bits 

IEEE-754).  
• Full support for struct, union, typedef and 

what you expect to find in C.  
• Support for (stack allocated) variable sized arrays.  
• Optimizing compiler that can output source level 

debugging information.  
• Source code debugger included.  
• Support for ELF/DWARF, hex output as well as 

various target specific output formats.  

Installing the Calypsi Tool Chain  
 
To get the compiler & tool chain head to the official page for 
Calypsi Tool Chains: https://www.calypsi.cc/  

a. Scroll Down on the page to the WDC 65816 target 
and download the following files: 

i. Hello World for C256U  

ii. Download the current user guide  

iii. Download the Windows version of the compiler  

b. Install the downloaded file “Calypsi-65816-3.6.4.msi”* 
by double clicking in the file and follow the on screen 
instructions to complete the install. 

 
* current version as of this guide is 3.6.4  

Installing GNU Make for Windows  

Since the examples provided with the “Hello World for 
C256” use a Makefile to control the compiling and linking 
of files you need to download a Make utility, if you don ́t 
already have one installed I suggest to use the GNU Make 
for Windows utility that you can get from: 

http://gnuwin32.sourceforge.net/packages/make.htm 

Installing the Calypsi “C” Compiler in Windows 
Written by Ernesto Contreras

1208/2022 

https://www.calypsi.cc/


a. Scroll down on the page and Download from the 
option: “Complete package, except sources”. 

b. Install the file “make-3.81.exe” by double clicking on it 
and follow the on screen instructions to complete the 
install. 

Configure the PATH to Bin directory of the Calypsi 
compiler  

The Calypsi compiler is not automatically added to the 
Path and you need to do so if you want make to be able to 
find the compiler and linker from the directory of your 
projects, to do so follow the instructions below:  

1. Click on the Windows Start Icon and click on the Gear 
Icon to enter ”Settings” : 

2. On Settings click the “System” Option  

3. On the System Settings page click on the “About” 
option from the left Menu: 

4. On the “About” page click on the option “Advanced 
system settings” that appears on “Related settings” on 
the right side of the screen: 

5. You should’ve made it into the “System Properties” 
dialog, please locate and click on the “Environment 
Variables...” button (at the bottom of the dialog form)  

 

 
 

 

 
  

1308/2022 



6. Search through the items in the “System variables” list 
(the bottom list). Click on the “Path” variable and press 
the “Edit” button: 

7. Click on the “New” button and add the path where the 
“Calypsi-65816\bin” directory is installed (usually “C:
\Program Files (x86)\Calypsi-65816\bin” but please 
verify it!)  

8. Verify if a Path to the “make” utility was added to the 
environment variables (usually “C:\Program Files 
(x86)\GnuWin32\bin”), if it’s not there please add an 
appropriate entry following the same steps that you just 
used to add the “Calypsi-65816\bin” path.  

9. Press “Ok” to close the “Edit Environment variable” 
dialog.Close all other dialogs. 

10.Close all other dialogs 

11. The configuration is now complete!  

Testing Hello World for C256U  

1. Unpack the zip file from the “Hello World for C256U” 
into a directory  

2. Open a windows terminal, I recommend the Windows 
“Terminal App”, to find it click on the windows start 
Icon and type “Terminal”  

3. Open the terminal program (and I suggest that you pin 
it in the taskbar to locate it easily!)  

4. Move to the directory where you unzipped the “Hello 
World for C256U” file  

5. Type “make hello.pgz” to build an executable PGZ file 

If all goes well the “hello.pgz” will be compiled in a 
zinch!  

1408/2022 



1508/2022 

6. Copy the program to an SD card to try it on your 
Foenix Computer. 

7. To execute the Program in your FOENIX type: 

BRUN “hello.pgz” 

Your Foenix Computer should respond:  

Hello World! 

Congratulations, Calypsi is installed and working! 


Recommended Next Steps  

1. Read the user guide that comes with Calypsi and 
asked you to download, it is indeed a very 
comprehensive document that will help you 
understand the compiler, linker and all its 
functions. 

2. If you find the compiler useful, please support the 
Author, there is information on how to do 
donations though Paypal on the web page 
https://www.calypsi.cc/ 

3. Stay tuned for more Guides!  

Library Look-see - VickyGraph 
by Ernesto Contreras

VickyGraph is a C library for Foenix C256 systems, 
developed for use with Håkan Thörngren's Calypsi C 
compiler.  The VickyGraph library was written by 
Ernesto Contreras. 

Base functionality includes: 

• Initializing the VICKY II graphics engine 
• Selecting one of several supported display modes 
• Drawing, and to a lesser extent, reading from the 

bitmap display via a set of graphic primitives. 

The VICKY II FPGA contains a powerful graphics 
engine which supports Sprites, Tilesets, Color LUTs and 
other features however, from a bitmap graphics 
perspective, it’s a blank canvas.  Said another way, there 
is no support for graphic shapes or plotting; the user 
must directly address memory in order to have graphics 
rendered.  This is where VickyGraph comes in. 

The following list details the objective and usage for 
each of the 11 provided graphic primitives: 

Erase Bitmap
Objective: clears the current bitmap page
Usage: clrBitmap() 

Point
Objective: sets pixel at (x,y) with color (col)
Usage: plot (x, y, col) 

Line
Objective: Draw a line from (x0,y0) to (x1,y1) using color (col)
Usage: plot_line (x0, y0, x1, y1, col)

Rectangle
Objective: Draw a hollow rectangle from (x0,y0) to (x1,y1) using 
color (col)
Usage: plot_rectangle (x0, y0, x1, y1, col) 

Filled Rectangle
Objective: Draw a filled rectangle from (x0,y0) to (x1,y1) using color 
(col)
Usage: plot_solid_rectangle (x0, y0, x1, y1, col) 

Bezier Curve
Objective: draws a curved line from (x0,y0) to (x1,y1) using color 
(col).
Usage: plot_bezier (x0, y0, xc0, yc0, xc1, yc1, x1, y1, col)

Circle
Objective: draws a hollow circle onscreen centered on (x,y) with 
radius (r) using color (col)
plot_circle (x, y, r, col) 

Filled Circle
Objective: draws a solid circle onscreen centered on (x,y) with radius 
(r) using color (col)
Usage: plot_solid_circle (x, y, r, col) 

Ellipse
Objective: draws a hollow ellipse centered on (x,y) with width 
(a) and height (b) using color (col)
Usage: plot_ellipse (x0, y0, a, b, col) 

Filled Ellipse
Objective: draws a solid ellipse centered on (x,y) with width (a) and 
height (b) using color (col)
Usage: plot_solid_ellipse (x0, y0, a, b, col) 

Fill Area
Objective: fills an area of pixels that share the same color as the pixel 
at (x,y) with a new color (col)
Usage: floodFill (x, y, col) 

Public repository: https://github.com/econtrerasd/VickyGraph 

We will be putting Ernesto’s VickyGraph library to the 
test in a future issue of Foenix Rising.  This has been a 
Library Look-see. 

https://www.calypsi.cc/
https://github.com/econtrerasd/VickyGraph


Quick take - A look at the Foenix Marketplace 
The ins and outs of downloading software for Foenix platforms

In late July, following release of issue #1 of this journal, we launched the Foenix Marketplace. 
The Marketplace is more of a content repository than a hub for commerce, in fact there is no 
commerce permitted.  Here is a quick Q&A style overview. 

Where is it?  In a secure location in Northern Virginia at a famous Cloud provider hosting site.  
But you can access it at: http://apps.emwhite.org/foenixmarketplace 

What it is? A web browser accessible site to download binary coded apps in .hex, .pgx, 
and .pgz formats (including bitmap image and Sprite data); it is also home to this Foenix Rising 
Newsletter and includes code examples 
(primarily, short BASIC programs from our 
“Beginner’s Corner” column); It is also a place 
to download IDEs and Utilities.   
Each file has a representative ‘profile’ which 
identifies the version number, developer, a brief 
description, and (where available) a thumbnail 
screenshot and links to a github repo. 
At some point, we hope to support native 
downloads directly to Foenix platforms. While 
we do not anticipate running a full TCP/IP stack 
on Foenix, there are a few ideas kicking around 
to potentially relay content between an internet 
connected modern host and your Foenix. 

What Foenix platforms are supported?  At the 
moment, most of the content in the Marketplace 
is for C256 systems (FMX and the C256U/U+) 
but we will actively be adding software for other 
platforms (including the A2560 family) at the 
end of August and into September.  

How are files organized? 
Content may be filtered and/or selected 4 ways: 
a) Free browsing (default) - when first 

connected, there are no filters in place and 
content is paginated.  The bottom of each 
screen hosts the page picker from pg. 1 to pg. n.  Scroll, choose, and click to download.  
(pagination only works in ‘free browsing’ mode). 

08/2022 16

✦ The color scheme of the Foenix Marketplace evokes the cabinet palette of the original Nintendo Donkey Kong Arcade 
machine; cabinet build forums cite color recipes and Sherman Williams paint formulas; We settled on RBG 33E2FF.

http://apps.emwhite.org/foenixmarketplace


b) Select by category - a common use of category is to focus by 
platform such as “FMX”, however, there are categories that are 
not platforms at all such as“Newsletter”, “Sprite”, or 
“Windows software”. 

c) Filter by tag - a tag is a genre or an attribute that might be a 
“Game” or a “Demo” or include “.PGZ”.  Most files have 
more than one tag but only one tag may be selected for 
filtering. 

 Therefore, Category = “C256U/U+” and Tag = “Game” will 
 yield all games for the identified platform. 

d) Full text search by keyword(s) - will search across filenames, 
descriptions, and developer names, without prejudice.  Search 
terms may be any part of a word or multiple words however, 
multiple words (spaces permitted) must be an exact match.  As 
you type characters, the number of matching files will be 
dynamically updated. CAUTION: Using text search with 
Category and/or Tag is unreliable; when in doubt, click on the 
“RESET” button to re-load the form. 

How often is new content added? 
Generally monthly, but as more content is published, the 
frequency of updates will increase.  We are just getting started. 

What is the default ‘listing order’ of content?  Can I request to see ‘new’ only? 
Content is generally listed as ‘newest’ first, but there are some exceptions.  As explained in the 
FAQ, there is no user tracking or cookies; downloading is completely anonymous; so there is 
no way to notify or alert that something new has been added.  We may consider such a feature 
in the future.  We are trying to keep it simple for now. 

Why are some files .zip’d? 
Some content is packaged within platform independent .zip files.  Of course, there is no native 
Foenix zip/unzip/pkzip (yet).  But some apps are more complex than a single .PGX or .BAS.  
An example of this is the Foenix Sprite Editor discussed elsewhere in this Newsletter which 
includes assembly source files, a ‘make’ batch file, assembled machine code, a sample Sprite 
and other files within a .zip file. 

I am a developer, how can I publish code to make it available for others? 
Reach out to EMwhite via the feedback link, see page 2 (above), or find me on the Foenix Retro 
Discord channel.  We love not only complete and working apps, but demos, partially working 
apps, amusements, and code examples.  Everything helps the cause. 
In closing, have a look through the FAQ, which contains additional information.  We anticipate 
a heavy uptick in content as end of year approaches. 

Text search example, 
searching for the keyword 

“shoot”

08/2022 17

http://apps.emwhite.org/faq/


Beginner’s Corner 
More on MEMCOPY and Color LUT

The BASIC language, unlike ‘C’ or Assembly Language doesn't bother the programmer much with memory management.  
Yes, it’s possible to exhaust memory with an extremely long BASIC program; yes, you do need to keep track of BASIC 
variables and pay some attention to data types; and yes, DIM’d arrays can be cumbersome, but garbage collection and 
strings pretty much take care of themselves and floats (not named as such) can serve as looping iterators without fuss. 
The Commodore 64 and to some extent, the VIC 20 (both with BASIC 2.0), required extensive use of POKE and PEEK 
in order to take advantage of interesting features beyond just printing a character on the screen or reading a key or input 
from a keyboard or a peripheral. 
By the time BASIC 7.0 was released (with the Commodore 128), just about everything you would ever want to do on the 
platform had an associated BASIC command, and knowledge of the memory maps and registers were no longer vital for 
survival.  BASIC 7.0 had 168 commands in its arsenal.  BASIC 10.0 for the fabled Commodore 65 (never released by 
Commodore) had 185 commands, supposedly. 
On Foenix C256 platforms, we have BASIC816 and it features 90-something commands, operators, and function (versus 
Commodore BASIC 2.0 which had 71).  Remove Commodore’s legacy based I/O commands and you are really 
comparing about 90 to 60 which means that you’ve got far more utility here; and that is wonderful news !!  Or is it? 
As introduced in this column last month, we are able to do a fair amount with Sprites without even thinking about using 
POKE.  And while we have not yet spoken about Tiles or Bitmap graphics in this column, you’ll be happy to hear that 
BASIC816 support looks pretty good and some of what we've already learned is applicable. 

Music and sound?  That’s another topic and a long story, and I’m afraid that the answer is that the audio control 
capabilities of BASIC816 are about as good as SID control was within Commodore BASIC 2.0.  POKE and PEEK will 
again be your best friends : ) 

Where does this leave us?  In my opinion, it actually leaves us in good shape where ‘good shape’ equals learning quick 
access to commands for some of the heavy lifting required for an introduction to VICKY II graphic features, but 
ultimately, we will need to put in some work and learn how to read memory maps and spend time in the ML monitor.  
This column will help you get there.  And these new skills will be transferable as we move to different languages (‘C’ or 
Assembly) on a given platform or a different Foenix computer (such as the C256 Jr., still under development). 

DMA and why we need it (MEMCOPY to the rescue) 
Graphics are about moving data (often, densely packed, large amounts of data) from point ‘a' to point ‘b’, and on the 
Foenix, to do this efficiently, we ask the VICKY II DMA primitives for help.  Of course, we are doing this for VICKY, 
meaning that we are placing graphic data into her view (in Video RAM aka “VRAM”) so she can manage it, and 
ultimately, create the graphic signal output that a video monitor can understand in order to please humans with lovely and 
satisfying images in return. 
DMA as a technology has been around for years and while the first 8-bit consumer systems did not have the luxury, 3rd 
party products and subsequent 16-bit systems leveraged these circuits heavily.  Commodore's 
MOS outfit created an IC called the MOS 8726 between 1984 and 1985 and it was used within 
Commodore’s 1750 and 1764 RAM expansion units and others. 
Of course, by the time the Amiga was unveiled, terms like ‘blitter’ were more common and 
Agnus (one of Amiga's famous custom chips) had a big role in allowing the Amiga to raise and 
lower the desktop screen with ease and without interrupting the infamous bouncing ball demo; a 
feat that would otherwise fully consume the majority of machines resources, 68K CPU or not !! 
Fast forward to today (we live in the future) and we’ve got DMA functionality built into the 
VICKY II.  And the BASIC816 MEMCOPY command harnesses this power to setup and pass the 
acceleration through to your BASIC program. 

08/2022 18

In this month’s column, we will continue the discussion with a shallow dive into the important 
BASIC816 MEMCOPY command and talk a little more about Color look up tables (LUT) and specifically, 
how to leverage Sprite / LUT data after being saved from a Sprite Editor.  And ‘yes’, more balloon action.

✦ Distraction: What’s the diff between a programmer and a developer?  A programmer writes programs, a developer is 
used to chemically transform a film based latent image into a visible negative.

CBM’s first use 
of QFP??



08/2022 

MEMCOPY in practice 

On the last page of the Foenix Sprite Editor review (pgs. 9-11) above, you can see that we iteratively ‘stamp’ the image of 
the green arrow onto the bitmap screen using MEMCOPY which, using the RECT directive, copies a 2D (rectangle) region 
of data to VRAM.  The loop that does this iterates 200 times (once per horizontal pixel). 
The shape is small (16 x 16 pixels), but in aggregate, 200 times anything is a large enough task to tax an interpretive 
language like BASIC and really consume some wall-clock time. 

Let's capture the elapsed time, move on to a 2nd example, and then examine a non-DMA (PEEK and POKE) approach. 

Example 1: (this is the second example on the left side of pg. 11 above; here, we are just discussing the loop) 
3505 FOR X%= 1 to 200 
3610 IPOS%= &hB00000 + (SY%*15) *320 + X% 
3620 MEMCOPY RECT &h100400, 16, 16, 32 TO RECT IPOS%, 16, 16, 320 
3630 NEXT 

Result: the green arrow moves 200 pixels from the left edge of the screen to position 200 of the 320 pixel screen width  
Wall clock time: 3.88 seconds 

What if we expanded this to traverse the width of a higher resolution screen.  To do so, we need to remove bit 10 (the 
‘512’) from the GRAPHICS command on line 100, change the loop length, and modify the stride from 320 to 640. 

NOTE: we are running this loop to 624 because 624 + the 16 pixel width of the arrow will land it right at the edge of the 
screen, but still in view.  (It actually appears a few pixels away because the right most edge of the arrow is transparent). 

Example 2: (same as example 1, except with the modification noted; highlighted in blue) 

3505 FOR X%= 1 to 624 
3610 IPOS%= &hB00000 + (SY%*15) *640 + X% 
3620 MEMCOPY RECT &h100400, 16, 16, 32 TO RECT IPOS%, 16, 16, 640 
3630 NEXT 

Result: the green arrow moves 624 pixels from the left edge of the screen to the right border of the 640 x 480 screen 
Wall clock time: 10.76 seconds 

This next example is the piece de la resistance; that is, a fair representation demonstrating just how challenging work of 
this nature can be to an interpretive language like BASIC.  Mind you, neither the original (example 1 above), nor this 
example, is optimized and to be honest, I've taken liberties with Ernesto’s original code; it was never intended to be 
performant.  His code found a clever use of Sprite editor data to create icons on a bitmap screen.  Nevertheless, these 
examples do a good job at demonstrating the power of DMA and for us, how powerful MEMCOPY can be. 

In Example 3: (using PEEK and POKE instead of MEMCOPY.  Example 1 vs. example 3 diff highlighted in red) 

3505 FOR X%= 1 to 200 
3510 FOR YPIX% = 0 to 15 
3515 FOR XPIX% = 0 to 15 
3610 IPOS%= &hB00000 + (SY%*15) *320 + (YPIX%*320) + (XPIX%) + X% 
3620 POKE IPOS%, PEEK(&H100400 + (YPIX%*32) + XPIX%)	 ; MEMCOPY line was located here 
3630 NEXT : NEXT : NEXT 

Result: the green arrow moves 200 pixels from the left edge of the screen to position 200 of 320 using nested loops. 
Wall clock time: 222.51 seconds.  You are not seeing things, we pulled out MEMCOPY and replaced it with PEEK and POKE 
commands and a 2 dimension loop, and now it takes nearly 4 minutes instead of 3.8 seconds to accomplish the same task. 
In essence, all this block of code does is read 256 bytes (16 pixel x 16 pixel), then writes 256 bytes, and does so 200 
times.  In aggregate, it reads 51.2K of data and writes 51.2K of data which is greater than the total amount of usable 
memory in a Commodore 64 (w/kernal and BASIC banked in).  The combined nested loops impress nobody, but are 
necessary because we need a rectangle copy.  Of course there is room for optimization in the calculation, but the ‘as is’ 
comparison is staggering. 

Hopefully, this gives you a better appreciation of MEMCOPY’s value and power.  In theory, a VRAM to VRAM copy 
should be quicker than the SRAM (System RAM) to VRAM use; but the improvement is not noticeable since each 
iteration is waiting on the handoff between BASIC and the FPGA processor.  Next month, we will consider writing this 
block move in pure 65816 assembly (with and without the VDMA assist; I predict interesting results).  Let’s close out this 
topic for now with a look at the ‘manual’ page. 

19



MEMCOPY syntax 
Borrowing a/the page from the BASIC816 manual, here is the syntax with a few callouts to hopefully make your life easier.  
It took me a little while to wrap my head around this topic. 

08/2022 20

40 MEMCOPY LINEAR &h100001, 1024 TO LINEAR &hB00000, 1024 

This is very 
similar to 
what we do 
on line 40 
of a few of 
our 
examples 
from last 
issue.  In 
our case, 
we are 
copying 
from 
&h100001 
to ‘skip’ the 
first byte of 
the file 
(metadata 
from the 
Foenix 
Sprite 
Editor).  We 
are also 
moving 
from the 
middle of 
memory (1 
MB mark) 
to VRAM 
(&hB00000) 
aka (11 MB)

In our 
example 

above, the 
green arrow 

shape data 
embedded 

in the Sprite 
is 16 x 16 

pixels and 
has a ‘stride’ 

of 32 bytes 
(eg, the 
offset to 

where the 
next row of 
useful data 

begins) and 
copies to a 
destination 

with a stride 
of 320 pixels 

(aka, the 
screen width 

at 47+512 
resolution),  

In one of the 
examples 

above, we 
have a 640 
byte stride 

since we run 
the draw 
across a 

wider screen 
(GRAPHICS 

47 mode).

3620 MEMCOPY RECT &h100400,16,16,32 TO RECT IPOS%,16,16,640



Palette Manipulation 

Now let’s switch gears a bit.  If you read Beginner’s Corner in issue #1, you’ll recall that we had our Balloon Sprite 
defined and in memory, we loaded a Color LUT from BASIC language DATA statements, and we wrote a few simple 
loops to move a single balloon around the screen. 
Creating Sprites is fun and working with graphics in general, is enjoyable.  But it can also be 
frustrating because there is a fair amount going on behind the scenes.  Note the key phrase, 
“behind the scenes”.  Since data is encoded in bits and bytes and since it in no way resembles the 
end-product, we are going to need a good understanding of how to interpret color data so we can 
use it to our benefit.  On the next few pages, we will share one approach. 
(an alternate approach is to jump into a time machine and teleport to the year 2030 where we 
will have a Foenix with 4 screens and every tool imaginable; unfortunately, my time machine is 
in the shop, so instead we will create a few BASIC programs to assist with data gathering). 
Choosing colors from the aforementioned Sprite Editor color palette is quick and easy but 
knowing which of the colors you chose (many are similar looking, especially in high resolution) 
after the fact is near impossible unless you record the coordinates of colors on the 32 x 8 grid 
(see figure 21a), and then find a way to decode the BASIC data statements, counting to the 
precise position (“seven hundred and twelve, seven hundred and thirteen”…); get the picture? 

In last month’s column, example “I01P11A.BAS” loaded LUT 0 with a full set of 255 colors 
which were identical to the default palette of the Foenix Sprite Editor.  If you looked at the code, you saw that a FOR 
loop took a pile of values (768 of them) ranging from 0 to 255, and used SETCOLOR to build LUT 0. 
This month, we will dynamically alter (overwrite) a few of the colors in the LUT by redefining them on the fly with 
new values in order to affect subtle animation of our Foenix Balloon; specifically, the dark red beacon at the top (which 
we will flash dark green), and all of the colors of the flame at the bottom (6 of them).  To try this at home, you will 
need* “FBALLOO2.SPR” (the footnote below will lead you to the “why necessary”).   
Here’s a question: considering that we are about to overwrite values in the original  LUT, how might we undo an update 
later?  The bad news is there is no mechanism for this, they are gone forever.  (cue sad trombone).  Therefore, in 
addition to selecting new values, we are going to need to record the original RGB values.  “LUT LOAD” will help.   
Tool #1: “LUT LOAD.BAS” 
This tool loads the palette while presenting the RGB color 
values on the screen so you can record them (aka, write 
them down).  This utility, along with the “DUMP SPR” 
utility on the next page completes the picture.  
Figure 21b is a bit of an eye chart, but here is what is going 
on.  “LUT LOAD” displays pages (8 of them), each with 
32 colors per page, showing the hex and decimal color 
numbers and their corresponding RGB values. 
The BASIC program that does this is short (11 lines long 
not counting the DATA statements) and we’ve seen line 110 
and 130 prior.  Here it's wrapped in a FOR / NEXT loop.  
We are using variable c% and incrementing it on line 130. 

100 CLS : c%=0	 	 	 	 	 	 	 ; c% or color # is the iterator

110 READ r%, g%, b%		 	 	 	 	 	 ; same command as used last issue examples

120 PRINT "color num: ($”; HEX$(c%); “)"; c%; “:”, r%, g%, b%	 ; nicely formatted values, courtesy of BASIC 

130 SETCOLOR 0, c%, r%, g%, b% : c%= c% +1	 	 	 ; same command as used last issue examples 
140 IF c% MOD 32 <> 0 THEN 110	 	 	 	 	 ; we use this for pagination (32 per screen)

150 PRINT "--------------------------------------------" 
160 PRINT “PAGE:"; INT(c%/32); "/8   HEX  DEC"," (R)"," (G)"," (B)"	 ; this (and the line above) prints the footer

170 IF c% = 256 THEN 200	 	 	 	 	 	 ; detect ‘end’ and if so, jump to line 200 
180 PRINT : PRINT "Press a key for the next group"	 	 	 ; else wait print the ‘wait’ message 
190 GET a$ : CLS : GOTO 110		 	 	 	 	 ; get a key, clear screen, and loop back

200 END 

08/2022 21

fig. 21a

fig. 21b

Color # $35 for the beacon  
a lovely ‘dark green’

*Treasure hunt… page 25 speaks to the need for “FBALLOO2.SPR”



Now that we have our alternate colors and the equally important original colors, we will construct a table for 
documentation purposes (see pg. 23).  Just like memory, data written on paper without context does not mean much.  
They are just a bunch of values.  It's important to be organized. 

It’s also worth mentioning that our alternate colors do not need to be defined elsewhere in the LUT, but there’s nothing 
wrong if they are.  This is a bit confusing, but not if we think of a LUT as a massive box of crayons or colored pencils 
and accept the reality that many of them are rarely, if ever used (such as APRICOT or SEA FOAM) and yet, we may 
have doubles of some.  What we are doing is replacing the color in slot 73 or in the case of water colors, taking liberties. 

On pg. 21 we identified a nice green color from the Sprite Editor palette but we didn’t change our Sprite because the 
starting value of the beacon, as defined, is dark red ($49; see yellow box at the top of figure 22a below); 

The important part is capturing the values using “LUT LOAD” above.  We could have just as easily chose a Pantone 
color found on one of the many internet color guides in the same way that I chose Donkey Kong blue for the Foenix 
Marketplace color.  The important part is that we know how to 'mix' our chosen colors.  Now we just have to confirm 
that we are leveraging them as we thought when we originally defined our Sprite. 

Tool #2: “DUMP SPR.BAS” 
This program was printed on page 12 of Issue #1 though we 
did not discuss it.  “DUMP SPR” interprets Sprite data from 
SRAM and dumps it to the screen, presenting each set pixel 
with its color number in hexadecimal format.   
The following 5-line program does the work, peeling back the 
lovely colorful exterior to instead show the skeletal structure 
of hexadecimal values representing not colors, but values that 
index into the color LUT.  We are utilizing hexadecimal 
because an 8 bit value represented in hex occupies 2 
characters consistently and makes better use of screen real-
estate; and thankfully, BASIC816 affords us a handy BASIC 
command for this purpose; HEX$().  If we are going to 
graduate to Assembly language, begin to use the MONITOR, 
and learn how to leverage the dozens (if not hundreds) of registers that your Foenix computer has to offer, we should 
start getting familiar with this notation.  When I was in grade school in New York in the late 70’s, they taught us 
hexadecimal notation in math class.  (also the metric system). 
Here is the program listing, complete with copious comments.  It’s a bit dense here in the text; maybe copy and paste it 
to an editor and then modify it by inserting spaces to make it more readable: 

10 FOR y% =0 to 31 : FOR x %=0 to 31	 ; nested loop runs for each row (y%) and each column (x%) 32 x 32 
20 IF PEEK((y% * 32 + x + &H100000) = 0 THEN 50	 ; for each iteration, see if the value of the byte is 0.  If it is, goto line 50 
30 PRINT HEX$(PEEK(y% * 32 + x% + &H100000));	 ; otherwise, print hex value peeked from (offset + base).  Note the ‘;’ 
40 NEXT : PRINT : NEXT : END	 ; close the inner (x%) loop, print a blank line per row, close outer loop, end 
50 PRINT “ .”;: GOTO 40	 ; print a “ .” when a non-colored pixel is encountered.  The semicolon 
   prevents BASIC from printing a ‘return’, which is its default for each line 
   printed.  If we didn’t do this, every printed value (1024 of them) would 
   result in a column of hex digits that would  scroll continuously !! 

This program would be two lines shorter but we are opting to do something special when the transparent ‘color’ (value 0) 
is present.  This is useful because all unused pixels and all intentionally transparent pixels contain 0’s.  Remember, this is 
computer memory we are talking about, so every location has to contain some value. 
Memory can either contain uninitialized ‘garbage’ or whatever random data may have been present from a past use, or 
preferably, it contains expected data such as values we placed there or values that we will interpret for goodness. 
These two programs do not use POKE, only PEEK, and DATA and READ statement, so you can consider them read-only and 
harmless.  The only harm is keying in the incorrect address or botching up the formula.  Such a mistake will only send us 
on a wild goose-chase of madcap colors.  If during experimentation, you are struck with unexpected results, don’t give 
up.  We all learn by making mistakes and recovering from those mistakes.  Do keep a ‘prime’ copy of your LUT.  It’s 
important that what you see in the Sprite Editor (or your tool of choice) has a data set that you can use reliably. 
In our next issue, we will discuss a few enhancements for the Foenix Sprite Editor and also how to leverage saved 
palettes.  There is no Deluxe Paint for Foenix yet, but it’s not crazy to expect to see King Tutankhamun at some point. 

08/2022 22

Areas of interest

fig. 22a



Colors organized, and a simple program to put them to use 

 hex  - - LUT - - dec RGB color value             
dark red $49 73 130,  33, 29 
dark green (also $49; shared* w/above) 125, 164, 45  
red $F9 249 156,  51, 39 
dark orange $FA 250 191,  90, 62 
orange $FB 251 233, 134, 39 
yellow $FC 252 255, 177,  8 
light yellow $FD 253 255, 207,  5 
lighter yellow $FE 254 255, 240, 43 

*See lines 1030 and 1040 below 

What does this program do / what doesn’t it do?  
This program moves the Foenix Balloon diagonally within the bounds of a 640 x 480 screen.  This means that when the 
balloon heads in a given direction, it needs to a) sense the practical edge of the screen and in that eventuality, b) change 
direction on either (or rarely, both x and y) axis.  We could have run the x location down to 0 which is actually off screen 
(under the border, depending on the graphics mode, if we wanted to), but we are opting to define a top (tip%), bottom 
(bot%), and then characterize the right edge as (right%) and reeling it back ‘in’ to the (left%) edge of the screen. 

Why name a variable “tip%”?  Fun fact: an earlier version of this program used “top%”, which was intuitive, but the 
BASIC816 tokenize routine assumed I wanted “TOp%” as in: 
 “FOR x% = 1 TO p%” - this is NOT what I wanted because we are not using a FOR loop; but BASIC just 
 blindly saw the characters ’t’ and ‘o’ and assumed we were.  The lesson learned is: don’t use “to” or any 
 reserved words in your variable names.  The parsers we are accustomed to in 2022 don’t translate to primitive 
 languages.  They never had the time or memory to deal with context. 

Example “I02P23A.BAS” - There is a more elegant way to move a Sprite diagonally, but this works! 

100 x%=26 : y%=32 : as%=0 : in%=0 : be%=0	 ; Init starting position, as%(cent), in%(ward), be%(acon) flags

105 tip%=64 : left%=58 : bot%=448 : right%=614	 ; identify top, left, bottom, and right bounds 

110 IF x% MOD 40 = 0 THEN 1020	 ; alternate beacon every 40 horizontal pixels

120 SPRITEAT 0, x%, y%	 ; position Sprite 0 with the updated coordinates

125 FOR n = 1 TO 50 : NEXT	 ; time delay (will need to shorten this as complexity increases) 

130 IF as%=1 THEN 910	 ; if ascending branch to 910

140 y%= y% +1 : IF y%= bot% THEN 160	 ; otherwise inc y% and check if at bottom, if so, then 160

150 GOTO 700	 ; else goto 700 which is the x axis inc/dec block

160 as%= 1	 ; if at the bottom, reverse direction and fall to the x axis code 

700 IF in%= 1 THEN 730	 ; if x direction is ‘inward’ aka, decreasing then 730 

710 x%= x% +1 : IF x%= right% THEN 770	 ; otherwise inc x% and check if at right, if so then 770 
720 GOTO 110	 ; else go back to top, we’re done 
730 x%= x% -1 : IF x%= left% THEN 760	 ; since x direction is ‘inward’, dec x%, if at left border then 760

740 GOTO 110	 ; else go back to top, we’re done

760 in%= 0 : GOTO 110	 ; since at left, reverse dir then to top, we’re done 
770 in%= 1 : GOTO 110	 ; since at right, reverse dir then to top, we’re done 

910 y%= y% -1 : IF y%= tip% THEN 950	 ; since ascent, dec y% and if at top then 950

920 GOSUB 2000 : GOTO 700	 ; else gosub 2000 (flame cycle subroutine) then onto x axis code

950 as%= 0 : GOTO 700	 ; since at top, reverse direction then onto x axis code 

1020 IF be%= 1 THEN 1040	 ; if beacon flag (be%) is on, then 1040	  
1030 SETCOLOR 0, 73, 125, 164, 45 : be%= 1	 ; set color $49 (4 pixel block @ top of balloon) to green, set beacon flag

1035 GOTO 120	 ; to top

1040 SETCOLOR 0, 73, 130, 33, 29 : be%= 0	 ; set color $49 to dark red, clear beacon flag

1050 GOTO 120	 ; to top 
2000 RETURN	 ; placeholder for flame cycle subroutine


08/2022 23

2 colors for flashing the beacon

6 colors for cycling the flame on ascent



More about this BASIC program 
There are numerous approaches for iterating and testing, even in a language as simple as BASIC.  Adding decision 
statements with embedded calculations to the mix introduces time variability that can add up in unexpected ways. 
Aside from having to detect the screen edges, this program is made complex because we are animating the balloon’s 
flame only when ascending.  This works in our favor since in the natural world, gravitational forces work against thrust. 
Unfortunately, the way we’ve coded the other element of animation is flawed; the flashing beacon is nice and all, but as 
written, it will flash more slowly on ascent because the amount of time required to cycle the flame colors means less x 
movement per second.  We cycle the beacon each 40 pixels of x movement, so less overall motion across a given time 
span means more time between each flash when the balloon is going up. 
We can compensate for this by adding a line or two of code that uses a different MOD value on ascent, but there is no 
time for science here (calculating jiffy clock and the ‘cost’ of work), so one solution would be to approximate a fixed 
value that is calculated only after the rest of the program has been written.  Another approach is to bind the beacon 
flashing to an interrupt which is jiffy clock based.  We may do this another time. 
In the early days of game development, programmers literally calculated the cost of routines by tallying cycles per 
instruction and then added balance with compensating delay loops.  Games that execute time critical code in order to 
maintain smooth player / adversary motion need to deal with this at grand scale; think about the complexity of a game 
like the arcade classic, Galaga, which can have a highly variable number of enemies (each with different ‘flight path’ 
and rate of movement) and a variable number of missiles on the screen at any one time. 
Leveraging hardware features (such as interrupts) or algorithms that orchestrate timing in concert with a free running 
clock is effective, but BASIC is not exactly well suited for this type of programming.  For this we will need some 
assembly language; if interested, Pater Weingartner addresses this topic in one of his 65816 tutorial series videos, here. 

BASIC816, "We’ve got a problem” 
I’ve always been keen on off-the-beaten-path algorithms, and the solution to the self-inflicted challenge (animate a 
Sprite without the use of several, or a dozen different Sprite definitions) was something that I thought I had a good 
solution to but unfortunately, it exposed a flaw in BASIC816 that I did not anticipate. 
I planned on leveraging a single dimension array of integers of RGB values and a simple formula wrapped in a loop that 
applied newly selected values to each of the 6 palette colors used in the Foenix Balloon flame.  But in testing, I found a 
corner case (a bug in BASIC816) that has not been resolved (I confirmed this with the developer) and with no time left, 
I had to cut the cord.  What I will do is take a moment and let you know where I was going with it. 
The approach: 

• Add initialization of 0 for variable fla% (flame index) to line 100 
• Add a DIM for color array col%(18) to line 100 
• Add a GOSUB 3000 (to initialize the array) to line 100 
• Add the following to the program 

2000 n%=0 
2010 SETCOLOR 0,249+n%,col%(fla%*3), col%(fla%*3+1), col%(fla%*3+2) 
2015 n%=n%+1: if n%=6 goto 2050  
2020 fla%=fla%+1: if fla%=6 then 2040 
2030 goto 2010 
2040 fla%=0: goto 2010 
2050 return 

Each GOSUB call of this routine iterates n% 6 times (0..5), redefining colors $F9, $FA, $FB, $FC, $FD, and $FE with 
different sets of colors based on the index of variable fla%.  At least in theory, this is how it would work.  Since I was 
unable to run the code, I could not confirm whether the algorithm was convincing.  We may need to rework the order of 
the colors or alter the flame definition such that the color spread is more random, versus just being graduated vertically. 

3000 col%(0)= 156 : col%(1)= 51 : col%(2)= 39	 ; initialize red color 
3010 col%(3)= 191 : col%(4)= 90 : col%(5)= 62	 ; initialize dark orange color 
3020 col%(6)= 233 : col%(7)= 134 : col%(8)= 39	 ; initialize orange 
3030 col%(9)= 255 : col%(10)= 177 : col%(11)= 8	 ; initialize yellow 
3040 col%(12)= 255 : col%(13)= 207 : col%(14)= 5	 ; initialize light yellow 
3050 col%(15)= 255 : col%(16)= 240 : col%(17)= 43	 ; initialize lighter yellow 

08/2022 24

https://www.youtube.com/watch?v=820P4D62SW0&t=642s


Why “FBALLOO2.SPR”? 
When defining the original Foenix Balloon (months ago), I blindly chose colors that I thought looked good together 
without thinking forward that I would be programmatically manipulating data in any particular way.  As a result, I chose 
the same color for part of the flame as for the beacon at the top of the balloon. 
Fast forward to this issue and I suddenly have the need to dynamically redefine the color palette in order to provide the 
appearance of the beacon flashing.  This would have peculiar results anyplace else that I used the same color ‘dark red’, 
should it start alternating with ‘dark green’. 
To compensate for this, I redefined this portion of the Sprite and saved it with an 8th character of “2".  In doing so, I 
also took the opportunity to patch up the way that the flame area was organized.  I also stumbled upon something 
unexpected (that I did not correct). 
I inadvertently set a few pixels using color $01 which pertain 
to black in our palette.  Against a black background, it is 
indistinguishable from color $00 (aka transparent) and I didn’t 
realize it while editing; but it is obvious, thanks to our “DUMP 
SPR.BAS” example (figure 25a).   
For the work we are doing here, it won’t matter, but should we 
at some point navigate our balloon across a light blue 
background or in front of some clouds, it might appear odd. 
What I should have done was consistently set the ‘F’ area as 
actual black $01 and confirmed that everywhere else (between 
the balloon and the ropes and in unused areas of the Sprite) 
was transparent $00. 
The other thing I should have done, was to slightly redefine 
the color palette so that the cycle series $F9 through $FE was 
pushed one position such that the color sequence instead run from hex $FA to $FF.  Having values pressed against byte 
boundaries is sometime handy.  Thinking a few steps ahead (now in hind site!), if I move to assembly language, I can 
increment the value and then check for status ‘carry’ in a single branch instruction versus comparing against a particular 
value $FF as being the end of the range, before resetting.  In the end, it won't matter, but these are the things that you 
should consider when working with binary data or any data. 

A quick note on loading binary data into memory 
Because we’ve yet to touch on it directly, let’s talk about loading graphics data into memory from BASIC.  Simply, the 
BLOAD command performs a binary load of a file to a given address.  The following text is from the BASIC816 .pdf: 

As used within our programs, it is common to see  BLOAD “ICONS.SPR”, &h100000-1 and since we are loading binary 
data (not an application), the destination address is necessary.  The hexadecimal memory address (note the ‘&h’) of 
0x100000 is followed by a ‘-1’ simply to compensate for the fact that .SPR files have a leading byte.  You don’t always 
want an offset, but in this case, we need one because the leading byte of the Sprite file is extraneous. 

Final thoughts for now 
Between now and next issue, I’ll be releasing (to the Foenix Marketplace) a set of 12 Sprites that we will use in the next 
issue.  With it, we will be able to take care of the heavy lifting and resolve the timing variability and the fact that DIM 
doesn’t work as expected. 
Microcomputers, since they have limited resources, have always had to strike a balance between memory usage, code 
efficiency, and speed.  Since we are having this conversation in 2022 and not 1982, we can take comfort in the 
knowledge that we have many times more memory (and CPU power) than the systems that many of us grew up using. 
So moving along to the ‘ultimate’ solution; we will define two sets of 6 Sprites; one that is leveraged when the balloon 
is ascending, and one set for use when descending.  This approach will cost about 11K of additional Sprite data but sets 
us up nicely to leverage an extremely simple piece of code versus the madness I dragged you through on the prior 
pages. 

08/2022 25

fig. 25a



08/2022 26

“Bundle of joy” 
Minimalism, amplified

Jack Tramiel would have really liked the C256 Jr. concept.  It leverages time 
tested tech that Commodore developed across its most profitable years and 
adds openness, allowing the buyer decide how to finish the final 10% of their 
machine.  This is where “for the masses” meets the 2020’s.

Go crazy with a high-end, LED hologram projection mini-ITX case, squeeze it 
into an old (or new-vintage) keyboard case, or buy a $29 Pico-style ITX power 
supply from Amazon and 
screw a few standoffs to a 
piece of plywood.  (that’s 
what I’m going to do*)

“TINY VICKY” will feel 
familiar to anybody with 
Foenix experience; and for 
those that have used the 
Commodore VIC-II chip, 
VICKY will feel like a well 
appointed sports car.

Since there is an IEC port 
and a 20-pin CBM 
keyboard header onboard, 
lots of hardware and software 
interfacing options are possible.  As a C256U+ owner, It’s tempting to say “less 
is more”; but with this proof-of-concept/dev board, more is more!  It checks 
boxes that I have not heard in conversation since the early (pre FMX) days of 
Foenix, and does so at an especially attractive price.

The following pages detail a few of the C256 Jr’s assets in photo form.  Stay 
tuned for the next two issues where we will be discussing kernel development 
and a preview of the final prod specifications which are coming together now.

✦ … what I’ll really going to do is dust off my bench shear, my No. 16 punch, and a 48” box/pan brake, then ignore my 
family until my youngest son says “hey Dad, 1979 called, they want their middle school metal shop skills back”

Such a photogenic little one

The C256 Jr. wows its adoring fans with each snap of the photo 

shutter.  Each corner of the board is a conversation piece.



08/2022 27

Power, control, and header overview

Lower left to right

The 24-pin ITX power socket brings all of the 

necessary voltages and control signals to 
and from the board, resulting in a more 
simple design that can be interfaced to 

aftermarket cases and power easily.


To the right of the white ITX connector is a 
bank of dip switches (for boot and 

configuration), a reset button (also available 
on the header to the right), and a CR2032 

battery holder to power the real-time-clock.


Moving further to the right (see zoomed inset) 
is the standard Foenix mini-USB debug port, 
a series of status LEDs (yellow highlight), and 

a header for external switches and LEDs.

20 pin 
keyboard 

header

Unpopulated 
area for WiFi 
SLIP bridge

9-pin 
Joystick 

headers (2)

Stereo 
headphone 

audio out

Serial port 
header

ITX power

For hardwire toggle switch 
 (If not using ITX case wiring)

Case  and 
CODEC  

audio headers

unused 
 VIA lines 

SID (L/R) 
input 

Remote Debug 
(USB)



08/2022 

IEC evokes W-H-Y?  So many people ask “why 
bother” with this slow and antiquated interface?


If you have to ask, you don’t understand.  Many in 
this community possess a collection of aged IEC 

peripherals and some are building their own (new).


Well before SCSI, before SATA, before IDE, there were 
‘proprietary standards’ and Commodore just 

happened to have the coolest (borrowed from 
IEEE-488).  Overkill, ‘yup’.  Dog slow, ‘check’.  But by 
far, the coolest.  How else could my High School have 

shared an 8250 dual disk drive and a daisy wheel 
printer between 6 PET Computers “back in ’82”?

SD card (left, partially obscured), stereo audio line out, 
PS/2 mouse and keyboard; DVI-I video, and 6-pin DIN 

IEC (Commodore serial peripheral port)

JTAG, jumpers, and headers for serial vs. “SLIP bridge”


65C02 pulled to reveal this dev board’s QFP footprint


28



Back Page - Foenix Issue #2 takes a look at COMPUTE Magazine issue #2 
Compute began as a Newsletter, exclusively for the Commodore PET


In this first of two parts, we’ll take a look at the origins of what would become a flagship computer magazine 
and touch on a few products, distractions, and technologies that fostered the growth of an industry

I was at the right place at the right time ‘recently’ when a Minnesota based retro enthusiast offered up “old issues” of his 
vintage computer magazine collection for free.  He wasn’t keen on cataloging them ahead of shipping, or entertaining 
questions about individual issues, but the first to take them all and pay shipping, got them.  He was clear, however, that 
he was keeping issue #1 of each publication.  I may have paid $30 for shipping of a 12” x 12” box, the details are foggy.  
This recent event was 15 years ago. 
25 years prior to that, I was fortunate to have access to some of these publications when they were new, and like many 
across those years, the usefulness of having a monthly journal deliver a continuous supply of articles chock full of 
technical detail, tutorials, and type-in programs, could not be matched.  Of course, there were ads; tons and tons of ads 
which today, provide fodder for articles in their own right (such as last month’s Back Page on “Skyles 1541 Flash!”), or 
amazement (“I can’t believe such a product existed, wow!”), and also amusement (“what?! People paid that much for 
…”).  It was a different time and place then exists today, or has existed since the birth of the modern Internet. 
There was a time when two streams of content coexisted peacefully; a healthy print publishing industry, and an emerging 
pre-commerce (largely, University and Government funded) Internet, which offered managed Gopher, Archie, [and most 
of all] Usenet News services to those of us with access to Unix or VMS based school or work computers. 
SGML (structured generalized markup language) hadn’t yet led to a definition of HTML, and NeXT Computer would 
not have been invented for another 6-8 years and as such, Sir Berners-Lee was nowhere near prototyping his first HTTP 
Web Server. 
You see, in the mid-to-late 80’s and early 90s, Internet content was actually ‘free’ and printed material was worth the 
cost of subscription.  BBS’es weren’t bad either, and other options were emerging as well (such as Compuserve, Fidonet, 
Qlink, and moderated forums such as “The Well” aka The Whole Earth ‘Lectronic Link). 
It is ironic that just about all of the vintage print based material is catalogued and available for free today, meanwhile, 
you cannot even click on a recently published news article (or YouTube vid) of any kind without hitting a paywall or 
being force-fed “news” about how a single mother of 3 discovered an indispensable teeth-whitening trick or “32 child 
celebs from the 90s - you won't believe what they look like today !!”.  Ok, enough of that… I do apologize. 
The point of this article is a recollection of better times, and Compute Magazine joined TPUG, Transactor and others to 
report and disseminate news and innovation from a burgeoning industry, the first of its kind. 

The beginning - not the beginning 
In doing research for this article, I came to learn that even issue #1 of Compute, was 
not issue #1.  Compute was the 2nd iteration of a publication that began through the 
efforts of one Len Lindsay, who in April of 1978, decided to put his College 
Newsletter Editing skills to work; to aggregate Commodore PET resources and 
information into a folded 5.5” x 8.5” monthly titled the “PET GAZETTE”. 
Len’s first four issues were indeed published monthly, but success turned to growth 
which grew to become a burden, and it forced a seasonal issue frequency and 
ultimately, pushed Len to turn the publication over to “Small System Services”, who 
had reached out to him with interest right about the time that he was considering 
calling it quits.  Len went on to contribute to Compute as an author and an editor; 
You can read the ‘early’ days of Len’s story here (from Compute Issue #1, pg. 65). 

A very quick look at COMPUTE Issue #1  
The PET GAZETTE closed with a “Super-issue”, so it was only fitting that Compute 
begin with a seasonal (rather than monthly) “Fall of 1979” blockbuster of its own.   
Issue #1 of Compute was composed of 108 pages and contained 46 articles, 10 of 
which were product reviews plus a group of 4 passages representing Part 1 of Len’s 
Word Processor run-down;  There was also a hodgepodge of topics including some educationally focused, general 6502 
assembly language, a few articles on the BASIC language, one on printing ‘pin-feed’ labels, and an intro to a computer 
science level look at sorting algorithms, to name several. 

2908/2022 

Len Lindsay’s publication just prior to 
transition to ‘COMPUTE.’

https://www.commodore.ca/gallery/magazines/compute/Compute-001.pdf


Issue #1 of Compute broke from the Gazette’s Commodore PET only format, but 
PET related topics still dominated the issue and it attracted a growing list of 
contributors such as Jim Butterfield, and numerous others. 
Two of the more interesting articles to me (because of what came prior and what was 
to occur in the next 10 years) were Len Lindsay’s “The Evolution of a Magazine” 
retrospective, and the very much forward-looking “Publisher’s Remarks” editorial, 
which included Editor Robert Lock’s welcome notice, and framed his hopes for the 
new publication. 
The two-part “Sorting Sorts” is probably my single favorite article because it was 
rare in the early days of this publication to see advanced software development or 
data structure topics interspersed with consumer and hobbyist content.  In these early 
years, enthusiasts with SBCs were incorporating circuits that were on-par with 
industry quality integration (probably because many worked in electrical 
engineering in the first place), but software coming from 8-bit systems was just 
getting started. 

COMPUTE Issue #2 - size, shape, and distractions 
The remainder of this article discusses Issue #2 of  “COMPUTE. - The Journal for 
Progressive ComputingTM” as published by Small System Services in Greensboro 
North Carolina, USA.  We will continue on this topic in Part 2 of Foenix Rising #3. 
Issue #2 was published as the “January/February 1980” issue; at least, it was an 
issue said to represent the first two calendar months of what was to be a monumental 
decade for the magazine and the industry. 
Robert Lock, editor, quoted the time to publish an issue as a 4-5 month endeavor so 
it’s clear to see that with the exception of some last minute product release bulletins, 
the publishing workflow of the day didn't square well with the turnaround time 
offered by printers of this small but growing quantity. 
The newsstand cost of Compute was $2.00 and Issue #2 was 116 pages long 
including a 16 page buyers guide coined the “After Christmas Buyers Guide” (not to 
be confused with Issue #1’s “Christmas Buyers Guide” which was nearly 
identical : ) 
Loosely, the issue had a preamble containing a table of contents, editor notes, and 
miscellany, with the remainder of the magazine split into two parts, bisected by the 
aforementioned buyers guide.  Said guide looked as if it was printed inexpensive copy 
paper, the type you used in your home printer when you’re out of white paper (it was light blue). 
The buyers guide was more of a disorganized selection of ads than anything intentionally structured, but looked at 
individually, there were some gems within the guide and throughout the magazine; one example was the Eastern House 
Software’s “PET Breadboard Kit”. 
For $39.95 USD (postage included), the buyer gets a ‘kit’ composed of a breadboard and mounting plate, a 36” ribbon 
cable with 24 pin DIP plug, a connector for the PET’s IEEE / User port, and and a clip lead, for power. “Now you can 
build those circuits you see in magazines easily and quickly!”, the advert urged. 
Later in the same issue, Eastern House Software advertised some actual software: the MAE (PET Macro Assembler, for 
$169.95); this was the predecessor to the two-pass Commodore branded “Commodore 64 Macro Assembler”, one that I 
relied heavily upon a few years later.  It’s fun to connect the dots backwards to see the origins of where some of these 
companies originated. 
One of the first pieces of reader feedback was from a guy named Dennis C. Hayes (yes, that D. C. Hayes).  He was 
writing in response to an issue #1 review of one of his products.  Really, he was writing to plug his other products but 
also to complain (mildly) about the fact that his $395 Apple Micromodemtm product and accessories were reviewed 
“without being noted as trademarked products” (tsk tsk), but also that the magazine did not refer to his outfit by its 
proper registered name, “D. C. Hayes and Associates, Inc.”. 

3008/2022 

COMPUTE. Issue #2

COMPUTE. Issue #1 - note the 
reference to PET Gazette



A vintage detour - the rise and fall of D.C. Hayes and their Smartmodemtm 
Of course, from proprietary beginnings (Apple specific ROM encoded signaling of the 
Micromodem), Hayes and his associates would go on and revolutionize the modem industry 
with the release of the Smartmodemtm (1981) and its “ATtention” command set method of 
controlling it, which obviated the need for complex and proprietary interfacing in favor of 
simple text commands that were interpreted by the device over RS-232 serial lines.   
The Smartmodem was expensive, but the “AT” protocol made the Hayes usable to 
Commodore, Atari, Apple, dumb terminals or Unix hosts without fuss.  And this feature-set 
was ripped off by every manufacturer including Commodore with their 1200 baud modem.  
This facet of the peripheral industry grew massively right through the PC clone revolution, 
though Hayes was wiped off the map after a few poorly timed bets on ISDN and a fierce 
battle with US Robotics, not to mention a growing field of also-ran, low-cost manufacturers 
including one with an ominous name: “Prometheus”.  Hayes never saw them coming; had 
they been on the lookout for the “Titan who was chained and tortured by Zeus for stealing 
fire from heaven and giving it to humankind”, we wouldn’t be having this conversation.  : )  Again, I apologize. 
Hayes also botched licensing opportunities and mismanaged the handling of patents and lawsuits, which makes Dennis 
Hayes letter to Compute even more ironic. 
I still have my Smartmodem 1200 and it still works to this day.  It proudly powered my Commodore 64 based BBS for a 
few years when I was in Berkeley; I still have not located the sister product, the Hayes Stack Chronograph (see figure 
30a).  It could be that Hayes did not sell many; the Chronograph was an expensive solution looking for a problem. 
As Foenix owners are likely aware, all Foenix computers ship with an RTC (real time clock) circuit; feed your Foenix a 
CR2032 battery and you’ve essentially reproduced what Hayes once sold for $249 USD (about $800 in 2022 dollars), 
but directly memory mapped as binary coded decimal. 
The Hayes Chronograph on the other hand, would communicate over 300 and 1200 baud serial lines with a host 
computer to exchange ‘real time’ chrono data from this single purpose product.  Once configured, you could ask it 
“ATRT” and retrieve “123015P” (12:30pm and 15 seconds) over the serial port.  You could also set an alarm and have 
the chrono raise the ring-indicator (pin 22) high when the set time had been triggered. 
I suppose there were practical uses for it, but there were better things to spend money on in the 80s.  Such as a computer.  
You might create a ‘time card’ application for a small business, coordinate transmission of file transfers for off-peak 
hours to save toll charges, or guarantee that logged events (such as user logons) were recorded according to an out-of-
band, but accurate and controlled time source.  The industry and the pages of Compute, BYTE, and other magazines 
were full of products like the Chronograph. 

COMPUTE had articles too 
The first half of Issue #2 contained just three or four general (multi-platform applicable) articles, and many that were 
PET specific.  More than likely, the editors had to push content around in an attempt to have the Buyers Guide act as a 
separator between the general magazine and the Gazette portion, the latter of which was indeed platform focused.  
Compute did something similar in Issue #1 as well, but quickly gave up on the idea eventually. 
In the early months of the publication, they struggled to get their hands on Apple and Atari content, logging 2.5 pages for 
the Apple and 7.5 pages for Atari in this issue (though the first 4.5 pgs was a comparison of Atari and PET BASICs). 
Compute would not have this problem for long; by mid way through their first year, the quality and quantity of articles 
improved dramatically and they likely had a backlog of cutting room floor content to choose from.  They eventually 
started paying authors by the page ($50), and by January of 1981, had moved to a monthly format. 

Here is a list of of articles from the first ‘half’ of Issue #2, a few of which are tagged (x) for discussion below. 
 Sorting Sorts, Part 2 by Rick and Belinda Hulon PET* 3.5 pgs 
 Memory Partition of Basic Workspace by Harvey B. Herman PET 2 pgs 
 Home Accounting, Plus An Easier Method of Saving Data by Robert W. Baker PET 4 pgs 
 Word Processing. A User Manual of Reviews - Part 2 by Len Lindsay PET 5 pgs 
 Book Review: 6502 Assembly Language Programming by Jim Butterfield general 6502 1 pg 
(x) Machine Language Versus BASIC: Prime Number Generation / AIM 65 by Marvin L De Jong AIM 65* 2 pgs 
 BASIC Memory Map (Page 0): Aim, Kim, Sym, PET, Apple compiled by Jim Butterfield Multiple 1 pg 
(x) Ramblin’ by Roy O’Brien PET 1 pg 
 The Learning Lab by Marlene Pratto PET* 1 pg 
 Micros and the Handicapped by The Delmarva Computer Club general 1 pg 

fig. 30a

3108/2022 * one or more of the examples referenced are applicable or convertible to other platforms



A closer look at Marvin L De Jong’s Prime Number Generation article 
Dr. Marvin De Jong was a Physics professor at The School of the Ozarks in Pt. Lookout, Missouri and authored a series 
of books on Computer Science, Physics, and Mathematics in addition to a handful of articles for various publications. 
In this article, Dr. Marvin provides commented 6502 source code and an explanation supporting an algorithm to 
calculate prime numbers of the form 2N-1.   
The code provided was designed for an AIM 65, but the platform specific portion is limited to a single JSR to print the 
ASCII character (number) from the accumulator to the screen; this code should easily port to a Commodore 64, 1 Mhz. 
reference system using CHROUT $FFD2 and to a C256U Foenix system using PUTC $00:1018. 
The author introduces the subject recalling that one of his students was searching for ‘perfect numbers’ and wrote a 
BASIC program for an Apple that took 11 hrs to produce a desired result.  In response, Dr. De Jong rewrote the program 
in assembly language and executed it on the AIM 65, requiring only 11 minutes of run time. 
Commented source is provided for the 86 instruction program; based on the text, the program requires an additional 3K 
of working space in order to store the resulting number in BCD.  I won’t pretend to be able to understand how he goes 
about generating said large prime numbers, but you can : ). What I will do is assemble it and post it on the Foenix 
Marketplace as part of the September update.  I’ll include relative timing in the notes on the Marketplace as well. 
Following this (his first article published in Compute), Dr. De Jong went on to write others including: 

• Experimenting With The 6551 ACIA - March, 1981 
• Computer Communications Experiments - March, 1981 
• A Floating-Point Binary To BCD Routine - April, 1981 
• A General Purpose BCD-To-Binary Routine - October, 1981 
• Plotting Polar Graphs With The Apple II - February 1982 

“RAMBLIN’” by Roy O’Brien - what is this all about?! 
Roy O’Brien’s article stands out, not only because is one of the few music 
related articles in this early day of Compute, but because his article is 
entirely hand penned, including a table detailing musical notes, frequency 
in Hz., and shift rates for addresses that map to the PETs 6522 versatile 
interface adapter (VIA) to yield magic. 
This is interesting to me for three reasons.  First off, the CB2 line of the 
user port of the PET computer was a commonly identified source for 
generating audio from the early Commodore machine but I hadn’t seen 
details published in a music context.  You see, only newer PETs came 
equipped with a piezo buzzer.  Early games such as Weather and Space 
Invaders were limited until an enterprising engineer/hacker figured out and 
socialized a standard way of producing audible atonal buzzing.  I do not 
believe that Roy invented the method, but he clearly had an understanding 
of the workings, and explained it on one page, expertly. 
The 2nd reason this articles appeals to me is that the VIC20 (which would 
have basic tone generation capabilities), was not even announced at the 
time of this writing and while other platforms from competing 
manufacturers did offer audio capabilities, this method generated a fair 
amount of excitement for PET owners. 

Finally, this article appeals to me because it is hand drawn; the 
publisher probably had no other means of easily producing the 
table and diagrams.   
Mr. O’Brien would go on and publish more in subsequent 
issues; to the left is a sample of two others, published during 
Compute’s first year.  The camera idea is particularly 
entertaining; look for these on archive.org. 
Next issue, we will pick up where we left off, examining a few 
more vintage ads and looking more closely at the ‘Gazette’ 
section of Compute, issue #2.  Until then …

3208/2022 

https://archive.org/details/compute-magazine?and%5B%5D=year:%221980%22&and%5B%5D=year:%221979%22

	Twice the fun

