
Foenix/MCP
A Simple, Portable Operating System

for the Foenix Line of Computers

version 1.00

Peter Weingartner

May 28, 2022

Overview
The Foenix/MCP is the new kernel for the Foenix line of retro-style computers. Written in C,
primarily for the A2560 series of M680x0 based computers, the kernel is meant to be simple
and portable across the entire line of Foenix computers and able to run on any CPU the
systems will provide.

The intention of Foenix/MCP is to provide very simple startup and access to the Foenix
computers for their owners. It is not intended to be the operating system that solves all
problems but is really little more than a glorified loader. Its purpose is to help the user get
started with their Foenix and run programs, but as much as possible it should get out of the
programmer’s way rather than require them to program in a certain way. As such, there are a
few key goals in the design, as well as some anti-goals:

Foenix/MCP Goals
• Allow the user to access and manage files on hard drive, SD card, or floppy disk (for

machines that support floppy drives)

• Allow users to load and run programs

• Provide functions to support user programs in doing tedious or complex low level
tasks that may be necessary but hardly interesting to write as part of a game.

• Provide initialization for the built-in devices at boot up

Foenix/MCP Anti-goals
• Enforce a certain way of programming a Foenix computer

• Lock any part of the machine down so it cannot be accessed by a user programmer

• Require user programs to incorporate or link multiple libraries of code to do anything

In keeping with these goals and anti-goals, Foenix/MCP is very simple. It is a single tasking
kernel with no support for multi-tasking. As much as possible, however, the kernel routines
are written in a re-entrant fashion to try to be thread safe if a user program wants to add
multi-tasking. There is currently no memory manager included in the system calls, although
one may need to be added in the near future. The concept is that once a user program is
loaded, it may have access to everything. While drivers are included for many of the devices
on the Foenix computers, programs are welcome to take over direct control of those devices
or replace the included device drivers, as needed. Doing so may interfere with documented
functionality of Foenix/MCP, but this to be encouraged rather than otherwise.

Your Foenix computer is yours, absolutely.1

Copyright Information
Foenix/MCP and all code except for the FatFS file system library are published under the BSD
3 Clause License. Please see the source code for the license terms.

The Foenix/MCP file system is provided by the FatFS file system, which is covered under its
own license. For information about the author of FatFS and its license terms, please see the
Foenix/MCP source code.

1 Warning: Please do not attempt to install an ENCOM SHV series digitizing laser on any Foenix computer
running the Foenix/MCP operating system. Early versions of the MCP displayed erratic behavior when
given access to a digitizing laser. The author of Foenix/MCP, ENCOM, and their associated subsidiaries and
agents will not be liable for any unexpected behavior experienced by users. END-OF-LINE

Table of Contents

Overview..1
Foenix/MCP Goals..1
Foenix/MCP Anti-goals...2
Copyright Information..2

Devices...5
Channel Devices...5
Block Devices..6
Files Channels...6

Paths...6

Command Line Utility..6
Commands..6
Settings...8
System Variables...9
Editing Keys..9

System Calls..10
Core Calls...11
Channel Calls..16
Block Calls...22
File System Calls...26
Process and Memory Calls..34
Miscellaneous Calls..37
Text Display Calls...40

User Programs...50
Memory Map (680x0)...50
Execution Process...51

The Boot Process...52
Boot Sectors...52

Hard Drive and SD Card..52
Floppy Drive...53

Extending the System..53
Channel Device Drivers...54
Block Device Drivers..55
Keyboard Translation Tables..56
File Loaders...57

Appendix...58

Console IOCTRL Commands...58
Floppy IOCTRL Commands...58
ANSI Terminal Codes..59
Keyboard Scan Codes..60
Printer Support...61

Printer Status Codes..61
Font Support..62
Useful Data Structures...62

Time...62
Directory Entries..63

System Information..63
Model Numbers...63
CPU Numbers..64

Screen Information...64
Screen Mode Flags...65

Error Codes..65
PGX File Format..65
PGZ File Format..66

What is Missing..66

Devices
Devices on the Foenix computers fall into one of two main categories: channel devices, and
block devices.

Channel Devices
Channel devices are predominantly sequential, byte oriented devices. They are essentially
byte streams. A program can read or write a series of bytes from or to the device. A channel
can have the notion of a “cursor” which represents the point where a read or write will
happen. Examples of channel devices include the console, the serial ports, and files.

Currently, the only fully supported channel devices are open files, the keyboard, and the
screen. In the future, there should be full support for the serial ports, the parallel port, and the
MIDI ports. Channel devices are assigned as follows:

Number Device
0 Main console (keyboard and main screen or channel B)
1 Secondary console (keyboard and EVID or channel A)
2 Serial Port #1
3 Serial Port #2
4 Parallel Port
5 MIDI Ports
6 Files

Figure 1: The components of Foenix/MCP

Keyboard

Screen

Parallel

SD Card

IDE HD

Console

Serial

MIDI

Floppy

FatFS

Files

Channels

RTC

Interrupts

Block
Devices

System
Calls

Block Calls

FSYS Calls

Text

By default, channels 0 and 1 are open automatically to devices 0 and 1 respectively at boot
time.

Block Devices
Block devices organize their data into blocks of bytes. A block may be read from or written to
a block device, and blocks maybe accessed in any order desired. Examples of block devices
include the IDE/PATA hard drive, the SD card, and the floppy drive.

Out of the box, there are three block devices supported by Foenix/MCP:

Number Device Path
0 SD card /sd
1 Floppy drive (if available) /fd
2 IDE (PATA) hard drive /hd

Files Channels
Files represent a special channel pseudo-device. Although files are stored on block devices,
they may be open as file channels, which may be accessed like a channel device. There is a
special file channel driver, which converts channel reads and writes on a file to the
appropriate block calls. Access to these file channels is managed in part through the file
system calls listed below.

Paths

File and directory names follow the Unix style path conventions. That is, the forward slash (/)
is used as a separator, and drives are treated as directories (“/sd”, “/hd”, etc.). FAT32 long file
names are supported, but not Unicode characters. Special path names “.” and “..” are
supported to specify a path relative to the current path. Example paths are:

/sd/hello.txt
/hd/system/format.elf
../games/HauntedCastle/start

Command Line Utility

Commands
The command line utility works much like the command line in CP/M or MS-DOS. The first
“word” typed on a line is the “command” to be executed. There are several built-in
commands, but if a command is not recognized as a built-in command, Foenix/MCP will try
to find and run an executable file of that name. In the current version of Foenix/MCP, it will

look for a PGX or PGZ file of that name in the current working directory. In future versions, a
more sophisticated search mechanism will be in place, and other file formats may be
supported.

The built in commands include:

HELP / ? – Print out a potentially useful help message, summarizing the commands that
may be used.

CALL <address> – Transfers execution (in supervisor mode) to the machine code at the given
address. The code is called as if it is a C function taking no arguments and returning no data.

CD <path> – Change the current working directory.

CLS – Clear the screen

DEL <path> – Delete a file or empty directory, given its path

DISKFILL <drive #> <sector #> <byte> – A diagnostic tool to fill a sector on a drive with
a byte

DISKREAD <drive #> <sector #> – A diagnostic tool to read and display a sector on a
drive

DUMP <address> [<count>] – Display <count> bytes of memory on the screen. If no count is
provided, the command will display sixteen bytes.

LABEL <drive #> <label> – Set the volume label of a drive.

LOAD <path> – Read a file into memory

MKBOOT <block device #> {-r} | {-s <path>} | {-b <path>} – Make the indicated
disk bootable. There are three possible options: -r removes the boot code off the drive, -s takes
a path to an executable file and makes it the code to run on boot, -b takes the path to a file and
uses it as the boot code (except for the parts needed to support partitions). See the chapter on
booting for details.

MKDIR <path> – Create a directory, given its path

PEEK8 <address> – Read and display a byte from an address in memory.

PEEK16 <address> – Read and display a 16-bit word from an address in memory.

PEEK32 <address> – Read and display a 32-bit word from an address in memory.

POKE8 <address> <value> – Store a byte at an address in memory

POKE16 <address> <value> – Store a 16-bit word at an address in memory

POKE32 <address> <value> – Store a 32-bit word at an address in memory

PWD – Display the current working directory

REN <old path> <new path> – Rename a file

SET <name> <value> – Assign a value to a setting (see below)

GET <name> – Display the current value of a setting

SYSINFO – Display potentially useful information about the Foenix computers

TYPE <path> – Read and print out a file

Settings
In addition to commands, the command line utility provides a number of “settings.” Settings
may be changed with the SET command and viewed with the GET command (if they are
readable). Settings will, in general, have some sort of side-effect by being set. They can turn
on or off particular functions, change colors, etc. Settings currently in the command line
include:

DATE yyyy-mm-dd – The current date in the real time clock

TIME hh:mm:ss – The current time in the real time clock

FONT <path> – For machines with a single screen, the font to use on the screen. (See “Font
Support” below for more information about the fonts supported.)

FONT@0 <path> – For machines with multiple screen, the font to use on screen #0 (See “Font
Support” below for more information about the fonts supported.)

FONT@1 <path> – For machines with multiple screen, the font to use on screen #1 (See “Font
Support” below for more information about the fonts supported.)

KEYBOARD <path> – The keyboard layout. The path provided must go to a binary file 1024
bytes long. These 1024 bytes provide all eight translation tables needed by the
sys_kbd_layout system call (see below for details).

KEYCOLOR <color> – Sets the color of the keyboard LED matrix on the A2560K. Color is
specified as a 16-bit number of the format 0x00RRGGBB. This setting will not be present on
other machines.

SCREEN <screen number> – For machines with multiple screens, sets the screen to use as the
main interaction screen (0 for Channel B or the graphics and text screen, 1 for the text-only
Channel A or EVID screens). NOTE: this screen will be the console screen (channel ID 0) for
all text mode programs, unless they change the console device themselves. Channel #1 will go
to the other screen.

SHELL <path> – Replace the built-in CLI with a different command processor shell. The
path provided is the path to the executable file. This executable will be loaded and started
instead of the CLI at boot time, and it will be re-executed whenever a program calls
sys_exit. A “path” of “CLI” will restore the original CLI, although this should not be
needed in ordinary use.

System Variables
The SET and GET command also support system variables. If you attempt to SET a name that
is not a built-in setting, the SET command will set the value of the system variable named,
creating it if it does not already exist. Likewise, GET will return the value of that system
variable, returning an error if it does not have a value.

SET LIGHTCYCLE BLUE

Defines a system variable “LIGHTCYCLE” and gives it the value “BLUE”.

GET LIGHTCYCLE

Prints the value of the system variable “LIGHTCYCLE”.

Editing Keys
Simple line editing is supported in the CLI. The following keys have special functions in the
CLI line editor:

Key Function

ESC Erases the entire line

LEFT Move the cursor back one column (stops that the beginning of the line)
CTRL-LEFT Move to the beginning of the line
RIGHT Move the cursor forward one column (stops at the end of the text on the

line)
CTRL-RIGHT Move the cursor to the end of the line
UP Go back in the command history

DOWN Go forward in the command history
BACKSPACE Deletes the character to the left of the cursor
DELETE Deletes the character under the cursor
CTX SWITCH (A2560K only) Switches interaction screen between channel A and channel

B
MENU HELP (A2560K only) Prints the command help list

System Calls
On the Motorola 68000 series computers, system calls are made through the TRAP #15
instruction. The function number (which determines which call to make) is passed in the D0
register. Parameters are passed in the data registers: D1 for the first parameter, D2 for the
second, and so on. Results are returned in the D0 register, and may be 8-bits, 16-bits, or 32-bits
in length.

NOTE: Foenix/MCP expects registers to be saved using a “callee saves” scheme. The system
call framework will save registers D1-D7 and A0-A6 and restore them upon returning to the
caller. Future versions may trim that down a bit to save only the registers used by the
particular system call, but in general the caller should expect that its register values will not
be affected except for D0.

Note that even pointers are passed using the data registers, when address registers might
make more sense. This was done to keep the bindings of the system calls more
straightforward. If this turns out to be a problem, later versions of the FoenixMCP may use
the stack instead.

For many system calls, the return value is simply a status indicator: 0 represents success, and
a negative number indicates an error condition, with the value specifying what error. For
those functions that return a value (e.g. sys_chan_read), the data returned will be 0 or
positive for success, and a negative number for an error condition. An exception would be
sys_int_register, which must return a pointer and has no error condition.

The system calls are broken out into six major blocks:

• Core: these are the most essential calls for the operating system. Mostly, this is where
interrupts are managed.

• Channel: these are the calls for working with channels and channel devices.

• Block: these are the calls for accessing block devices at a low level. Most user programs
will not need these calls

• File System: these are the calls for accessing files at a higher level

• Process and Memory: There’s only one here at the moment, but this block will support
running programs and managing memory.

• Miscellaneous: these are calls I could not figure out a better place for

• Text Device Calls: these are low-level operations for the text mode displays

Core Calls
Number Name Description
0x00 sys_exit Exit the user program and return the command line
0x01 Reserved
0x02 sys_int_register Register a function as an interrupt handler
0x03 sys_int_enable Enable a particular interrupt
0x04 sys_int_disable Disable a particular interrupt
0x05 sys_int_enable_all Enable all maskable interrupts
0x06 sys_int_disable_all Disable all maskable interrupts
0x07 sys_int_clear Clear an interrupt’s pending flag
0x08 sys_int_pending Return true if an interrupt’s pending flag is set
0x09 sys_get_info Fill out a structure describing the computer

Function 0x00 sys_exit

Description This function ends the currently running program and returns control to the
command line. It takes a single short argument, which is the result code that
should be passed back to the kernel. This function does not return.

Prototype void sys_exit(short result)

C Example sys_exit(0); // Quit the program with result 0

Assembly clr.w d0 ; Function 0: sys_exit
clr.w d1 ; Result code: 0
trap #15

Function 0x02 sys_int_register

Description Registers a function as an interrupt handler. An interrupt handler is a function
which takes and returns no arguments and will be run in at an elevated
privilege level during the interrupt handling cycle.

The first argument is the number of the interrupt to handle, the second
argument is a pointer to the interrupt handler to register. Registering a null
pointer as an interrupt handler will “deregister” the old handler.

The function returns the handler that was previously registered.

Prototype p_int_handler sys_int_register(short int_num,
 p_int_handler handler)

C Example void sof_handler() { … }

sys_int_register(0, sof_handler);

Assembly move.w #$02,d0 ; Function sys_int_register
clr.w d1 ; 0 for Channel A SOF interrupt
move.l #sof_handler,d2 ; Pointer to the handler
trap #15

Function 0x03 sys_int_enable

Description This function enables a particular interrupt at the level of the interrupt
controller. The argument passed is the number of the interrupt to enable. Note
that interrupts that are enabled at this level will still be disabled, if interrupts
are disabled globally by sys_int_disable_all.

Prototype void sys_int_enable(short int_num)

C Example sys_int_enable(0); // Enable the Channel A SOF interrupt

Assembly move.w #$03,d0 ; Function: sys_int_enable
clr.w d1 ; 0 is Channel A SOF interrupt
trap #15

Function 0x04 sys_int_disable

Description This function disables a particular interrupt at the level of the interrupt
controller. The argument passed is the number of the interrupt to disable.

Prototype void sys_int_disable(short int_num)

C Example sys_int_disable(0); // Disable the SOF interrupt

Assembly move.w #$04,d0 ; Function: sys_int_disable
clr.w d1 ; 0 is Channel A SOF interrupt
trap #15

Function 0x05 sys_int_enable_all

Description This function enables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_enable_all()

C Example sys_int_enable_all();

Assembly move.w #$05,d0 ; Function: sys_int_enable_all
trap #15

Function 0x06 sys_int_disable_all

Description This function disables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_disable_all()

C Example sys_int_disable_all();

Assembly move.w 0x06,d0 ; Function: sys_int_disable_all
trap #15

Function 0x05 sys_int_enable_all

Description This function enables all maskable interrupts at the CPU level. It returns a
system-dependent code that represents the previous level of interrupt
masking.

Prototype short sys_int_enable_all()

C Example sys_int_enable_all();

Assembly move.w #$05,d0 ; Function: sys_int_enable_all
trap #15

Function 0x06 sys_int_clear

Description This function acknowledges the processing of an interrupt by clearing its
pending flag in the interrupt controller.

Prototype void sys_int_clear(short int_num)

C Example sys_int_clear(1); // Clear the Channel A SOL interrupt

Assembly move.w #$05,d0 ; Function: sys_int_clear
move.w #1,d1 ; Channel A SOL interrupt
trap #15

Function 0x06 sys_int_pending

Description This function acknowledges the processing of an interrupt by clearing its
pending flag in the interrupt controller.

Prototype short sys_int_clear(short int_num)

C Example sys_int_clear(1); // Clear the Channel A SOL interrupt

Assembly move.w #$05,d0 ; Function: sys_int_clear
move.w #1,d1 ; Channel A SOL interrupt
trap #15

Function 0x09 sys_get_info

Description Fill out a structure with information about the computer. This information
includes the model, the CPU, the amount of memory, versions of the board and
FPGAs, and what optional equipment is installed.

The only parameter is a pointer to a s_sys_info structure that is to be filled
out by the routine.

There is no return value.

Prototype void sys_get_info(s_sys_info * sys_info)

C Example struct s_sys_info info;
sys_get_info(&info);
printf(“Machine: %s\n”, info.model_name);

Assembly move.w #$09,d0 ; Function: sys_get_info
move.l #sys_info,d1 ; Pointer to structure to populate
trap #15

Channel Calls
Number Name Description
0x10 sys_chan_read Read bytes from a channel
0x11 sys_chan_read_b Read a byte from a channel
0x12 sys_chan_read_line Read a line of text from a channel
0x13 sys_chan_write Write bytes to a channel
0x14 sys_chan_write_b Write a byte to a channel
0x15 sys_chan_flush Ensure any pending writes are completed
0x16 sys_chan_seek Set the position of the read/write cursor in the channel
0x17 sys_chan_status Get the status of the channel
0x18 sys_chan_ioctrl Send a command to the channel (channel dependent)
0x19 sys_chan_register Register a channel device driver
0x1A sys_chan_open Open a channel device
0x1B sys_chan_close Close a channel
0x1C sys_chan_swap Swap the two provided channels.
0x1D sys_chan_device Return the device ID of the provided channel.

Function 0x10 sys_chan_read

Description Read bytes from a channel and fill a buffer with them, given the number of the
channel and the size of the buffer. Returns the number of bytes read.

Prototype short sys_chan_read(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
short n = sys_chan_read(c, buffer, 128);

Assembly move.w #$10,d0 ; Function: sys_chan_read
move.w chan,d1 ; Channel number
move.l #buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x11 sys_chan_read_b

Description Read a single byte from the channel. Returns the byte, or 0 if none are
available.

Prototype unsigned char sys_chan_read_b(short channel)

C Example short c = …; // The channel number
unsigned char b = sys_chan_read_b(c);

Assembly move.w #$11,d0 ; Function: sys_chan_read
move.w chan,d1 ; Channel number
trap #15
; Byte in d0

Function 0x12 sys_chan_read_line

Description Read a line of text from a channel (terminated by a newline character or by the
end of the buffer). Returns the number of bytes read.

Prototype short sys_chan_read_line(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
short n = sys_chan_read_line(c, buffer, 128);

Assembly move.w #$12,d0 ; Function: sys_chan_read_line
move.w chan,d1 ; Channel number
move.l #buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x13 sys_chan_write

Description Write bytes from a buffer to a channel, given the number of the channel and
the size of the buffer. Returns the number of bytes written.

Prototype short sys_chan_write(short channel,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
unsigned char buffer[128];
short n = sys_chan_write(c, buffer, 128);

Assembly move.w #$13,d0 ; Function: sys_chan_write
move.w chan,d1 ; Channel number
move.l #buffer,d2 ; Address of buffer
move.w #128,d3 ; Size of buffer
trap #15

Function 0x14 sys_chan_write_b

Description Write a single byte to the channel.

Prototype short sys_chan_write_b(short channel, unsigned char b)

C Example short c = …; // The channel number
sys_chan_write_b(c, 0x41);

Assembly move.w #$14,d0 ; Function: sys_chan_write_b
move.w chan,d1 ; Channel number
move.b #$41,d2 ; The byte to write
trap #15

Function 0x15 sys_chan_flush

Description Ensure any pending writes to a channel are completed.

Prototype short sys_chan_flush(short channel)

C Example short c = …; // The channel number
sys_chan_flush(c);

Assembly move.w #$15,d0 ; Function: sys_chan_flush
move.w chan,d1 ; Channel number
trap #15

Function 0x16 sys_chan_seek

Description Set the position of the input/output cursor. This function may not be honored
by a given channel as not all channels are “seekable.” In addition to the usual
channel parameter, the function takes two other parameters:

• position = the new position for the cursor

• base = whether the position is absolute (0), or relative to the current
position (1).

Prototype short sys_chan_seek(short channel,
 long position, short base)

C Example short c = …; // The channel number
sys_chan_seek(c, -10, 1); // Move the point back 10 bytes

Assembly move.w #$16,d0 ; Function: sys_chan_seek
move.w chan,d1 ; Channel number
move.l #$FFFFFFFF,d2 ; Position: -1
move.w #1,d3 ; Base: relative
trap #15

Function 0x17 sys_chan_status

Description Gets the status of the channel. The meaning of the status bits is channel-
specific, but four bits are recommended as standard:

• 0x01: The channel has reached the end of its data

• 0x02: The channel has encountered an error

• 0x04: The channel has data that can be read

• 0x08: The channel can accept data

Prototype short sys_chan_status(short channel)

C Example short c = …; // The channel number
sys_chan_status(c);

Assembly move.w #$17,d0 ; Function: sys_chan_status
move.w chan,d1 ; Channel number
trap #15

Function 0x18 sys_chan_ioctrl

Description Send a command to a channel. The mapping of commands and their actions
are channel-specific. The return value is also channel and command-specific. In
addition to the channel number, the function takes three arguments:

• command: the number of the command to execute

• buffer: an array of bytes to serve as additional data for the command
(may be null)

• size: the number of bytes in the buffer

Prototype short sys_chan_ioctrl(short channel, short command,
 unsigned char * buffer, short size)

C Example short c = …; // The channel number
short cmd = …; // The command
short r = sys_chan_ioctrl(c, cmd, 0, 0); // Send simple command

Assembly move.w #$18,d0 ; Function: sys_chan_ioctrl
move.w chan,d1 ; Channel number
move.w #1,d2 ; Command 1
move.l #0,d3 ; Null buffer
move.w #0,d4 ; Buffer is empty
trap #15
; Result is in D0

Function 0x19 sys_chan_register

Description Register a device driver for a channel device. A device driver consists of a
structure that specifies the name and number of the device as well as the
various handler functions that implement the channel calls on a channel for
that device.

See the section “Extending the System” below for more information.

Prototype short sys_chan_register(struct s_dev_chan *device)

C Example struct s_dev_chan dev;
short r = sys_chan_register(&dev); // Register the driver

Assembly move.w #$19,d0 ; Function: sys_chan_register
move.l #dev,d1 ; Device descriptor
trap #15

Function 0x1A sys_chan_open

Description Open a channel device for reading or writing.

Takes three arguments:

• dev: the number of the device to open

• path: a device-specific string describing any particular resource/or
parameters for the connection. This might be ignored by the channel
device, if it is irrelevant.

• mode: a bit field specifying if the connection is for reading (0x01) or
writing (0x02). A channel device might ignore this, if the direction is
inherent.

Returns the channel number (if positive) or an error code (if negative).

Prototype short sys_chan_open(short dev,
 const char *path,
 short mode)

C Example // Serial port: 9600bps, 8-data bits, 1 stop bit, no parity
short chan = sys_chan_open(2, “9600,8,1,N”, 3);

Assembly move.w #$1A,d0 ; Function: sys_chan_open
move.w #2,d1 ; Device
move.l #path,d2 ; Path
move.w #3,d3 ; Mode
trap #15

Function 0x1B sys_chan_close

Description Close a channel that was previously open by sys_chan_open.

Takes a channel number, but does not return anything useful.

Prototype short sys_chan_close(short dev)

C Example short chan = sys_chan_open(2, “9600,8,1,N”, 3);
…
sys_chan_close(chan);

Assembly move.w #$1B,d0 ; Function: sys_chan_register
move.w (chan),d1 ; Channel number
trap #15

Function 0x1C sys_chan_swap

Description Swaps two channels, given their IDs.

Takes the IDs of the two channels to swap. Returns 0 on success, any other
number is an error.

If before the call, channel ID channel1 refers to the file “hello.txt”, and
channel ID channel2 is the console (#0), then after the call, channel1 is the
console, and channel2 is the open file “hello.txt”. Any context for the
channels is preserved (for instance, the position of the file cursor in an open
file).

Prototype short sys_chan_swap(short channel1, short channel2)

C Example // Exchange the primary and secondary text screens
short result = sys_chan_swap(0, 1);
…
sys_chan_close(chan);

Assembly move.w #$1C,d0 ; Function: sys_chan_swap
move.w #0,d1 ; Channel number 1
move.w #1,d2 ; Channel number 2
trap #15

Function 0x1D sys_chan_device

Description Given a channel ID (the only parameter), return the ID of the device associated
with the channel. The channel must be open.

Returns the ID of the device, or a negative number if there is an error

Prototype short sys_chan_device(short channel)

C Example // Get the device ID of the current primary text device
short dev = sys_chan_device(0);

Assembly move.w #$1D,d0 ; Function: sys_chan_device
move.w #0,d1 ; Channel number
trap #15

Block Calls
Number Name Description
0x20 sys_bdev_getblock Read a block from the block device
0x21 sys_bdev_writeblock Write a block to a block device
0x22 sys_bdev_flush Ensure any pending writes are completed
0x23 sys_bdev_status Get the status of the block device
0x24 sys_bdev_ioctrl Send a command to the block device (device dependent)
0x25 sys_bdev_register Register a block device driver

Function 0x20 sys_bdev_getblock

Description Read a block from a block device. Returns the number of bytes read.

In addition the number of the block device, this function takes three
arguments:

• lba: the logical block address of the block to read

• buffer: the byte array in which to store the data

• size: the number of bytes in the byte array

Prototype short sys_bdev_getblock(short dev,
 long lba,
 unsigned char * buffer,
 short size)

C Example short bdev = BDEV_HDC; // The device number
unsigned char buffer[128];

// Read the MBR of the hard drive
short n = sys_bdev_getblock(bdev, 0, buffer, 128);

Assembly move.w #$20,d0 ; Function: sys_bdev_getblock
move.w #BDEV_HDC,d1 ; Channel number
clr.l d2 ; LBA: 0 (MBR)
move.l #buffer,d3 ; Address of buffer
move.w #128,d4 ; Size of buffer

trap #15

Function 0x20 sys_bdev_putblock

Description Write a block from a block device. Returns the number of bytes written.

In addition the number of the block device, this function takes three
arguments:

• lba: the logical block address of the block to write

• buffer: the byte array in which to store the data

• size: the number of bytes in the byte array

Prototype short sys_bdev_putblock(short dev,
 long lba,
 unsigned char * buffer,
 short size)

C Example short bdev = BDEV_HDC; // The device number
unsigned char buffer[128];

// Write the MBR of the hard drive
short n = sys_chan_putblock(bdev, 0, buffer, 128);

Assembly move.w #$21,d0 ; Function: sys_bdev_putblock
move.w #BDEV_HDC,d1 ; Channel number
clr.l d2 ; LBA: 0 (MBR)
move.l #buffer,d3 ; Address of buffer
move.w #128,d4 ; Size of buffer
trap #15

Function 0x22 sys_bdev_flush

Description Ensure any pending writes to a block device are completed.

Prototype short sys_bdev_flush(short dev)

C Example short bdev= …; // The device number
sys_bdev_flush(bdev);

Assembly move.w #$22,d0 ; Function: sys_bdev_flush
move.w bdev,d1 ; Device number
trap #15

Function 0x23 sys_bdev_status

Description Gets the status of a block device. The meaning of the status bits is device
specific, but there are two bits that are required in order to support the file
system:

• 0x01: Device has not been initialized yet

• 0x02: Device is present

Prototype short sys_bdev_status(short dev)

C Example short bdev = …; // The channel number
sys_chan_status(bdev);

Assembly move.w #$23,d0 ; Function: sys_bdev_status
move.w bdev,d1 ; Device number
trap #15

Function 0x24 sys_bdev_ioctrl

Description Send a command to a block device. The mapping of commands and their
actions are device-specific. The return value is also device and command-
specific. In addition to the device number, the function takes three arguments:

• command: the number of the command to execute

• buffer: an array of bytes to serve as additional data for the command
(may be null)

• size: the number of bytes in the buffer

Four commands should be supported by all devices:

• GET_SECTOR_COUNT (1): Returns the number of physical sectors on
the device

• GET_SECTOR_SIZE (2): Returns the size of a physical sector in bytes

• GET_BLOCK_SIZE (3): Returns the block size of the device. Really only
relevant for flash devices and only needed by FatFS

• GET_DRIVE_INFO (4): Returns the identification of the drive

Prototype short sys_bdev_ioctrl(short channel,
 short command,
 unsigned char * buffer,
 short size)

C Example short dev = …; // The device number
short cmd = …; // The command
short r = sys_bdev_status(dev, cmd, 0, 0); // Send simple
command

Assembly move.w #$24,d0 ; Function: sys_bdev_ioctrl
move.w bdev,d1 ; Channel number
move.w #1,d2 ; Command 1
move.l #0,d3 ; Null buffer
move.w #0,d4 ; Buffer is empty
trap #15
; Result is in D0

Function 0x25 sys_bdev_register

Description Register a device driver for a block device. A device driver consists of a
structure that specifies the name and number of the device as well as the
various handler functions that implement the block device calls for that device.

See the section “Extending the System” below for more information.

Prototype short sys_bdev_register(struct s_dev_block *device)

C Example struct s_dev_block dev;
short r = sys_bdev_register(&dev); // Register the driver

Assembly move.w #$25,d0 ; Function: sys_chan_register
move.l #dev,d1 ; Device descriptor
trap #15

File System Calls
Number Name Description
0x30 sys_fsys_open Open a file
0x31 sys_fsys_close Close a file
0x32 sys_fsys_opendir Open a directory
0x33 sys_fsys_closedir Close a directory
0x34 sys_fsys_readdir Read a directory entry
0x35 sys_fsys_findfirst Find the first entry in a directory matching a pattern
0x36 sys_fsys_findnext Find the next entry in a directory matching a pattern
0x37 sys_fsys_delete Delete a file
0x38 sys_fsys_rename Rename a file
0x39 sys_fsys_mkdir Create a directory
0x3A sys_fsys_load Load a file into memory
0x3B sys_fsys_get_label Get the label of a volume
0x3C sys_fsys_set_label Set the label of a volume
0x3D sys_fsys_set_cwd Set the current working directory
0x3E sys_fsys_get_cwd Get the current working directory
0x3F sys_fsys_register_loader Register a file loader

Function 0x30 sys_fsys_open

Description Attempt to open a file in the file system for reading or writing. Two arguments
are required:

• path: the path to the file to open

• mode: flags indicating how the file should be opened:

◦ 0x01: Read

◦ 0x02: Write

◦ 0x04: Create if new

◦ 0x08: Always create

◦ 0x10: Open file if existing, otherwise create

◦ 0x20: Open for append

Returns a channel number associated with the file. If the returned number is
negative, there was an error opening the file.

Prototype short sys_fsys_open(const char * path

 short mode)

C Example short chan = sys_fsys_open(“hello.txt”, 0x01);
if (chan > 0) {
 // File is open for reading
} else {
 // File was not open… chan has the error number
}

Assembly move.w #30,d0 ; Function: sys_fsys_open
move.l #path,d1 ; Path…
move.w #$01,d2 ; Mode = 1 (read existing)
trap #15
; Channel number will be in d0

Function 0x31 sys_fsys_close

Description Close a file that was previously opened, given its channel number. If there
were writes done on the channel, those writes will be committed to the block
device holding the file.

Prototype void sys_fsys_close(short chan);

C Example short chan = sys_fsys_open(…);
// …
sys_fsys_close(chan);

Assembly move.w #$31,d0 ; Function: sys_fsys_close
move.w (chan),d1 ; Channel number for the file
trap #15

Function 0x32 sys_fsys_opendir

Description Open a directory on a volume for reading, given its path.

Returns a directory handle number on success, or a negative number on
failure.

Prototype short sys_fsys_opendir(const char *path);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
} else {
 // There was an error… error number in dir
}

Assembly move.w #$32,d0 ; Function: sys_fsys_opendir
move.l #path,d1 ; Path
trap #15

Function 0x33 sys_fsys_closedir

Description Close a previously open directory, given its number.

Prototype void sys_fsys_closedir(short dir);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
} else {
 // There was an error… error number in dir
}

Assembly move.w #$33,d0 ; Function: sys_fsys_opendir
move.w (dir),d1 ; Directory number
trap #15

Function 0x34 sys_fsys_readdir

Description Given the number of an open directory, and a buffer in which to place the data,
fetch the file information of the next directory entry. (See below for details on
the file_info structure.)

Returns 0 on success, a negative number on failure.

Prototype short sys_fsys_readdir(short dir, struct s_file_info *file);

C Example short dir = sys_fsys_opendir(“/hd0/System”);
if (dir > 0) {
 // dir can be used for reading the directory entries
 struct s_file_info file;
 if (sys_fsys_readdir(dir, &file_info) == 0) {
 // file_info contains information...
 } else {
 // Could not read the file entry...
 }
} else {
 // There was an error… error number in dir
}

Assembly move.w #$34,d0 ; Function: sys_fsys_opendir
move.w (dir),d1 ; Directory number
move.l #file_info,d2 ; Pointer to the file info structure
trap #15

Function 0x35 sys_fsys_findfirst

Description Given the path to a directory to search, a search pattern, and a pointer to a
file_info structure, return the first entry in the directory that matches the
pattern.

Returns a directory handle on success, a negative number if there is an error

Prototype short sys_fsys_findfirst(const char *path,
 const char *pattern,
 struct s_file_info *file);

C Example struct s_file_info file;
short dir = sys_fsys_findfirst(“/hd0/System/”,
 “*.pgx”,
 &file_info);
if (dir == 0) {
 // file_info contains information...
} else {
 // Could not read the file entry...
}

Assembly move.w #$34,d0 ; Function: sys_fsys_findfirst
move.l #path,d1 ; Pointer to path
move.l #pattern,d2 ; Pointer to pattern
move.l #file_info,d3 ; Pointer to the file info structure
trap #15

Function 0x36 sys_fsys_findnext

Description Given the directory handle for a previously open search (from
sys_fsys_findfirst), and a file_info structure, fill out the structure with the file
information of the next file to match the original search pattern.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_findfirst(const char *path,
 const char *pattern,
 struct s_file_info *file);

C Example struct s_file_info file;
short dir = sys_fsys_findfirst(“/hd0/System/”,
 “*.pgx”,
 &file_info);
if (dir == 0) {
 // file_info contains information…

 // Look for the next…
 short result = sys_fsys_findnext(dir, &file_info);

} else {
 // Could not read the file entry...
}

Assembly move.w #$36,d0 ; Function: sys_fsys_findnext
move.w (dir),d1 ; Directory
move.l #file_info,d2 ; Pointer to the file info structure
trap #15

Function 0x37 sys_fsys_delete

Description Delete a file or directory, given its path.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_delete(const char *path);

C Example short result = sys_fsys_delete(“/hd0/test.txt”);

Assembly move.w #$37,d0 ; Function: sys_fsys_delete
move.l #path,d1 ; Path
trap #15

Function 0x38 sys_fsys_rename

Description Rename a file or directory.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_rename(const char *old_path,
 const char *new_name);

C Example short result = sys_fsys_rename(“/hd0/test.txt”, “doc.txt”);

Assembly move.w #$38,d0 ; Function: sys_fsys_delete
move.l #path,d1 ; Old Path
move.l #new_name,d2 ; New Name
trap #15

Function 0x39 sys_fsys_mkdir

Description Create a directory.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_mkdir(const char *path);

C Example short result = sys_fsys_mkdir(“/hd0/Samples”);

Assembly move.w #$39,d0 ; Function: sys_fsys_delete
move.l #path,d1 ; Path
trap #15

Function 0x3A sys_fsys_load

Description Load a file into memory.

Takes three arguments:

• path: the path to the file to load

• destination: the destination address in memory (0 to use the address
in the file)

• start: a pointer to a long to receive the starting address, if the file is an
executable binary.

Returns 0 on success, a negative number if there is an error

Prototype short sys_fsys_load(const char *path,
 long destination,
 long *start);

C Example long start;
short result = sys_fsys_load(“hello.pgx”, 0, &start);

Assembly move.w #$3A,d0 ; Function: sys_fsys_load
move.l #path,d1 ; Path
clr.l d2
move.l #start,d3
trap #15

Function 0x3B sys_fsys_get_label

Description Get the label of a volume.

Takes two arguments:

• path: the path to the drive to get the label from

• label: a string large enough to take a label

Prototype short sys_fsys_get_label(const char * path, char * label)

C Example char label[64];
short result = sys_fsys_get_label(“@hd0:”, label);

Assembly

Function 0x3C sys_fsys_set_label

Description Set the label of a volume.

Takes two arguments:

• drive: the number of the block device change

• label: the new label for the volume

Prototype short sys_fsys_set_label(short drive, const char * label);

C Example short result = sys_fsys_set_label(2, “FNXHD0”);

Assembly

Function 0x3D sys_fsys_set_cwd

Description Set the current working directory.

Takes a single string argument, the path to make the current working
directory.

Prototype short sys_fsys_set_cwd(const char * path)

C Example short result = sys_fsys_set_cwd(“@hd0:Foo:Bar”);

Assembly

Function 0x3E sys_fsys_get_cwd

Description Get the current working directory.

Takes two arguments:

• path: string to fill with the current working directory

• size: the size of the path string variable

Prototype short sys_fsys_get_cwd(char * path, short size)

C Example char cwd[255];
short result = sys_fsys_get_cwd(cwd, 255);

Assembly

Function 0x3F sys_fsys_register_loader

Description Register a file loader for a binary file type.

A file loader is a function that takes a channel number for a file to load, a long
representing the destination address, and a pointer to a long for the start
address of the program. These last two parameters are the same as are
provided the sys_fsys_load.

The registration function takes two arguments:

• extension: a three character extension to map the file type to the loader

• loader: a pointer to the loading routine.

On success, returns 0. It there is an error in registering the loader, returns a
negative number.

Prototype short sys_fsys_register_loader(const char * extension,
 p_file_loader loader);

C Example short foo_loader(short chan, long destination, long * start) {
 // Load file to destination (if provided)
 // If executable, set start to address to run
 return 0; // If successful
};
// ...
short result = sys_fsys_register_loader(“FOO”, foo_loader);

Assembly move.w #$3C,d0 ; Function: sys_fsys_run
move.l #path,d1 ; Path
clr.w d2 ; argc is 0
clr.l d3 ; argv is null
trap #15

Process and Memory Calls
Number Name Description
0x40 sys_proc_run Load and run an executable file
0x41 sys_mem_get_ramtop Get the upper limit of accessible system RAM
0x42 sys_mem_reserve Reserve a block of system RAM (from the top of memory)
0x43 sys_proc_elevate Move the current user process to supervisor mode
0x44 sys_var_set Set the value of a system variable
0x45 sys_var_get Get the value of a system variable

Function 0x40 sys_proc_run

Description Load and run an executable binary file.

It takes three arguments:

• path: the path to the file to run

• argc: the number of parameters to give to the executable

• argv: an array of strings containing the parameters to give to the
executable

This function will not return on success, since Foenix/MCP is single tasking.
Any return value will be an error condition.

Prototype short sys_proc_run(const char * path,
 int argc,
 char * argv[]);

C Example int argc = 2;
char * argv[] = {
 “hello.pgx”,
 “test”
};
short result = sys_proc_run(“hello.pgx”, argv, argc);

Assembly move.w #$40,d0 ; Function: sys_fsys_run
move.l #path,d1 ; Path
clr.w d2 ; argc is 0
clr.l d3 ; argv is null
trap #15

Function 0x41 sys_mem_get_ramtop

Description Return the limit of accessible system RAM. The address returned is the first
byte of memory that user programs may not access. User programs may use

any byte from the bottom of system RAM (0x400 on the m68k machines) to
RAMTOP – 1.

Prototype Unsigned long sys_mem_get_ramtop();

C Example unsigned long ramtop = sys_mem_get_ramtop();

Assembly move.w #$41,d0 ; Function: sys_mem_get_ramtop
trap #15

Function 0x42 sys_mem_reserve

Description Reserve a block of memory from the top of system RAM. This call will reduce
the value returned by sys_get_ramtop and will create a block of memory that
user programs and the kernel will not change. The current user program can
load into that memory any code or data it needs to protect after it has quit (for
instance, a terminate-stay-resident code block). sys_mem_reserve returns the
address of the first byte of the block reserved.

NOTE: a reserved block cannot be returned to general use accept by restarting
the system.

Prototype unsigned long sys_mem_reserve(unsigned long size);

C Example // Reserve a block of 256 bytes...
unsigned long my_block = sys_mem_reserve(256);

Assembly move.w #$42,d0 ; Function: sys_mem_reserve
move.l #256,d1 ; Reserve 256 bytes
trap #15

Function 0x43 sys_proc_elevate

Description Raises the privilege level of the current program to the highest level. On the
M68000 family processors, this will enable the program to use full supervisor
mode instructions.

Prototype void sys_proc_elevate();

C Example // Change the privilege level to supervisor
sys_proc_elevate();

Assembly move.w #$43,d0 ; Function: sys_proc_elevate
trap #15

Function 0x43 sys_var_set

Description Sets the value of a system variable.

If the variable does not exist, it will create a new variable of that name with the
given value. Name and value strings will not be modified and will be copied
by the call, so the caller is free to dispose of them after this call.

Takes two parameters:
• name – pointer to a string containing the name of the system variable to

update

• value – pointer to a string containing the value the system variable should
have

Returns 0 on success and any other number if there was an error.

Prototype short sys_var_set(const char * name, const char * value);

C Example Short result = sys_var_set(“SHELL”, “/fd/basic.pgz”);

Assembly move.w #$43,d0 ; Function: sys_var_set
move.l #name,d1 ; Pointer to the name
move.l #value,d2 ; Pointer to the value
trap #15

Function 0x44 sys_var_get

Description Returns the value of a system variable.

Takes one parameter:

name – pointer to a string containing the name of the system variable

Returns a pointer to the string containing the value of the variable or 0 if the
variable was not found.

NOTE: the string returned must not be modified by the caller.

Prototype const char * sys_var_get(const char * name);

C Example const char * path = sys_var_get(“SHELL”);

Assembly move.w #$44,d0 ; Function: sys_mem_get_ramtop
move.l #name,d1 ; Pointer to the name
trap #15
; D0 is either 0 or a pointer to the value

Miscellaneous Calls
Number Name Description
0x50 sys_time_jiffies Get the number of “jiffies” since system startup
0x51 sys_time_setrtc Set the date and time in the real time clock
0x52 sys_time_getrtc Get the date and time from the real time clock
0x53 sys_kbd_scancode Return the next scan code from the keyboard
0x54 sys_kbd_setlayout Set the keyboard layout translation tables
0x55 sys_err_message Get the error message for a given error number

Function 0x50 sys_time_jiffies

Description Returns the number of “jiffies” since system startup.

A jiffy is 1/60 second. This clock counts the number of jiffies since the last
system startup, but it is not terribly precise. This counter should be sufficient
for providing timeouts and wait delays on a fairly course level, but it should
not be used when precision is required.

At the time of this writing, the jiffy counter is provided by the start-of-frame
interrupt, and it can vary with different resolutions. In future, this timer should
be provided by the real time clock and may be supplemented with a finer grain
timer.

Prototype long sys_time_jiffies()

C Example long ticks = sys_time_jiffies();

Assembly move.w #$50,d0 ; Function: sys_time_jiffies
trap #15
; Tick count will be a 32 bit number in d0

Function 0x51 sys_time_setrtc

Description Sets the date and time in the real time clock. The date and time information is
provided in an s_time structure (see below).

Prototype void sys_time_setrtc(struct s_time *time)

C Example struct s_time time;
// …
sys_time_setrtc(&time);

Assembly move.w #$51,d0 ; Function: sys_time_setrtc
move.l #time,d1 ; Pointer to s_time structure
trap #15

Function 0x52 sys_time_getrtc

Description Gets the date and time in the real time clock. The date and time information is
provided in an s_time structure (see below).

Prototype void sys_time_getrtc(struct s_time *time)

C Example struct s_time time;
// …
sys_time_getrtc(&time);

Assembly move.w #$52,d0 ; Function: sys_time_getrtc
move.l #time,d1 ; Pointer to s_time structure
trap #15

Function 0x53 sys_kbd_scancode

Description Returns the next keyboard scan code (0 if none are available). Note that
reading a scan code directly removes it from being used by the regular console
code and may cause some surprising behavior if you combine the two.

See below for details about Foenix scan codes.

Prototype unsigned short sys_kbd_scancode()

C Example unsigned short code = sys_kbd_scancode();

Assembly move.w #$53,d0 ; Function: sys_kbd_scancode
trap #15
; D0 contains the scancode

Function 0x54 sys_kbd_layout

Description Sets the keyboard translation tables converting from scan codes to 8-bit
character codes. The table provided is copied by the kernel into its own area of
memory, so the memory used in the calling program’s memory space may be
reused after this call.

Takes a pointer to the new translation tables (see below for details). If this
pointer is 0, Foenix/MCP will reset its translation tables to their defaults.

Returns 0 on success, or a negative number on failure.

Prototype void sys_kbd_layout(const char *tables)

C Example char * tables = ...;
// …
sys_kbd_layout(tables);

Assembly move.w #$54,d0 ; Function: sys_kbd_layout
move.l #tables,d1 ; Pointer to table structure
trap #15

Function 0x55 sys_err_message

Description Given a Foenix/MCP error number, return a possibly helpful error message.

Prototype const char * sys_err_message(short errno)

C Example short result = sys_chan_write(…);
if (result != 0) {
 char * message = sys_err_message(result);
 …
}

Assembly move.w #$55,d0 ; Function: sys_err_message
move.w …,d1 ; Error number
trap #15
; D0 contains the pointer to the error message

Text Display Calls
Number Name Description
0x60 sys_txt_init_screen Reset a screen to its default text mode
0x61 sys_txt_get_caps Return a description of a screen’s capabilities
0x62 sys_txt_set_mode Set the display mode of a screen
0x63 sys_txt_setsizes Calculate the size of the text matrix
0x64 sys_txt_set_resolution Set the base display resolution
0x65 sys_txt_set_border Set the border size
0x66 sys_txt_set_border_color Set the border color
0x67 sys_txt_set_font Set the text mode font for the display
0x68 sys_txt_set_cursor Set the cursor appearance for the display
0x69 sys_txt_set_region Set the clipping/scrolling region to use on the display
0x6A sys_txt_get_region Get the current clipping/scrolling region
0x6B sys_txt_set_color Set the foreground and background colors for text
0x6C sys_txt_get_color Get the current foreground and background colors
0x6D sys_txt_set_xy Set the position of the cursor within the current region
0x6E sys_txt_get_xy Get the position of the cursor within the current region
0x6F sys_txt_scroll Scroll the current region
0x71 sys_txt_set_cursor_vis Set cursor visibility
0x72 sys_txt_get_sizes Gets the size of the screen in pixels and visible characters.

NOTE: All the text system calls take the screen or text display number as an argument. This
number may or may not be the same as the associated channel number, but it is conceptually
different. All Foenix systems will have a screen 0, and some may have a screen 1. Screen 0 is
the screen that can do both text and graphics. On the A2560K, this screen corresponds to
Channel B. On the C256 FMX, U, and U+, this screen corresponds to the built-in screen.
Screen 1 is typically the “secondary” text-only screen. On the A2560K, this screen is Channel
B. It will probably correspond to the EVID card on C256 machines.

Function 0x60 sys_txt_init_screen

Description Reset the screen to its default text mode.

Prototype void sys_txt_init_screen(short screen);

C Example // Reset screen 0
sys_txt_init_screen(0);

Assembly move.w #$60,d0 ; Function: sys_txt_init_screen
move.w #0,d1 ; Screen 0

trap #15

Function 0x61 sys_txt_get_caps

Description Returns a description of the device’s capabilities (supported modes, supported
resolutions, supported font sizes, etc.).

NOTE: the pointer returned points to a record in the kernel’s space, which
should be treated as read-only!

Prototype const p_txt_capabilities txt_get_capabilities(short screen);

C Example // Find out if screen #0 supports bitmap graphics
p_txt_capabilities caps = txt_get_capabilities(0);
if (caps.supported_modes & TXT_MODE_BITMAP) {
 // The screen supports bitmapped graphics
}

Assembly move.w #$61,d0 ; Function: sys_txt_get_caps
move.w #0,d1 ; Screen 0
trap #15
; D0 contains the pointer to the capabilities record

Function 0x62 sys_txt_set_mode

Description Set the display mode of the screen. There are five basic modes supported
which are indicated by the five flags:

• TXT_MODE_TEXT—Render base text

• TXT_MODE_BITMAP—Render bitmap graphics

• TXT_MODE_TILE—Render tilesets

• TXT_MODE_SPRITE—Render sprites

• TXT_MODE_SLEEP—Puts the monitor in power-saving mode by turning off
the sync signals

These flags are returned in the supported_modes field of the
t_txt_capabilities structure returned by sys_txt_get_caps, and they
may be combined to mix the different rendering engines if supported by the
hardware (for instance, TXT_MODE_TEXT | TXT_MODE_SPRITE would combine
text and sprites). TXT_MODE_SLEEP will over-ride all the other modes.

The result of turning off all the mode flags is system dependent, but should

result in a blank screen without putting the monitor into sleep mode.

Returns 0 on success, any other number means the mode was invalid for the
screen or the screen was invalid.

Prototype short sys_txt_set_mode(short screen, short mode);

C Example // Set screen 0 to text and tiles
short result = sys_txt_set_mode(0, TXT_MODE_TEXT |
TXT_MODE_TILE);
if (result) {
 // Handle the error
}

Assembly move.w #$62,d0 ; Function: sys_txt_set_mode
move.w #0,d1 ; Screen 0
move.w #$0009 ; TXT_MODE_TEXT | TXT_MODE_TILE
trap #15

Function 0x63 sys_txt_setsizes

Description Sets the text screen device driver to the current screen geometry, based on the
display resolution and border size.

Prototype void sys_txt_setsizes()

C Example sys_text_setsizes()

Assembly move.w #$63,d0 ; Function: sys_txt_setsizes
trap #15

Function 0x64 sys_txt_set_resolution

Description Set the base display resolution of the screen (e.g. 800x600, 640x480, etc.).

Takes the screen number, and the horizontal and vertical resolution in pixels.

Returns 0 on success, any other number indicates an error.

NOTE: the resolution provided must be listed in the resolutions field of the
t_txt_capabilities structure returned by sys_txt_get_caps.

Prototype short txt_set_resolution(short screen, short horizontal,
 short vertical);

C Example // Set screen 0 to 640x480
short result = sys_txt_set_resolution(0, 640, 480);
if (result) {
 // Handle error…
}

Assembly move.w #$64,d0 ; Function: sys_txt_set_resolution
move.w #0,d1 ; Screen 0
move.w #640,d2 ; 640x480
move.w #480,d3
trap #15

Function 0x65 sys_txt_set_border

Description Sets the size of the border around the screen.

Takes the number of the screen and the size of the border width and height. In
this context, width is the width of the left and right borders taken separately,
and height is the height of the top and bottom borders. So if width is 8 and
height is 16, 32 lines will be taken up by the top and bottom borders together,
and 16 columns will be taken up by the left and right borders.

NOTE: if the width and height of the borders are 0, the border will be disabled.

Prototype void sys_txt_set_border(short screen, short width,
 short height);

C Example // Set the border on screen 0: width of 16, height of 8
sys_txt_set_border(0, 16, 8);

Assembly move.w #$65,d0 ; Function: sys_txt_set_border
move.w #0,d1 ; Screen 0
move.w #16,d2 ; width = 16
move.w #8,d3 ; height = 8
trap #15

Function 0x66 sys_txt_set_border_color

Description Set the color of the border, using red, green, and blue components (which may
go from 0 to 255).

Prototype void sys_txt_set_border_color(short screen,
 unsigned byte red,
 unsigned byte green,
 unsigned byte blue);

C Example // Set the border of screen 0 to dark blue
sys_txt_set_border_color(0, 0, 0, 128);

Assembly move.w #$66,d0 ; Function: sys_txt_set_border_color
move.w #0,d1 ; Screen 0
move.b #0,d2 ; Red = 0
move.b #0,d3 ; Green = 0
move.b #$80,d4 ; Blue = 128

trap #15

Function 0x67 sys_txt_set_font

Description Set the font to be used in text mode on the screen.

Takes the screen number, the width and height of the characters (in pixels), and
a pointer to the actual font data.

NOTE: the font size must be listed in the font_sizes field of the
t_txt_capabilities structure returned by sys_txt_get_caps.

Returns 0 on success, any other number means the screen is invalid, or the font
size is invalid.

Prototype short sys_txt_set_font(short screen,
 short width,
 short height,
 unsigned char * data);

C Example // Set the font of screen 0 to an 8x8 font
unsigned char * font_data;
font_data = …;
short result = sys_txt_set_font(0, 8, 8, font_data);
if (result) {
 // Handle error
}

Assembly move.w #$67,d0 ; Function: sys_txt_set_font
move.w #0,d1 ; Screen 0
move.w #8,d2 ; 8x8
move.w #8,d3
move.l #font_data,d4 ; Font data
trap #15
; D0 contains the result code

Function 0x68 sys_txt_set_cursor

Description Sets the appearance of the text mode cursor.

Takes the screen number, whether or not the cursor should be displayed, the
blink rate, and the character to use for the cursor.

The enable parameter should be 0 to hide, and any other number to show

The rate parameter is one of:

• 0–1 Hz

• 1–2 Hz

• 2–4 Hz

• 3–16 Hz

The character parameter is the ASCII code of glyph from the screen’s font to
use as the cursor.

Prototype short sys_txt_set_cursor(short screen,
 short enable,
 short rate,
 char character);

C Example // Set the cursor to “@”, blinking at 1 Hz
sys_txt_cursor(0, 1, 0, ‘@’);

Assembly move.w #$68,d0 ; Function: sys_txt_set_cursor
move.w #0,d1 ; Screen
move.w #1,d2 ; Enabled
move.w #0,d3 ; Rate = 1 Hz
move.w #$40,d4 ; Cursor is @
trap #15

Function 0x69 sys_txt_set_region

Description Sets the rectangular region of the screen that will be used for all subsequent
printing, scrolling, and filling. This call takes the screen number and a pointer
to a t_rect structure containing the origin (upper-left corner) and the size
(width and height) of the region. These values are specified in character cells,
with (0, 0) being the upper-left corner of the screen. If the size of the rectangle
is 0 (width = height = 0), then the region will be the full screen.

Returns 0 on success, any other number is an error.

Prototype short sys_txt_set_region(short screen, p_rect region);

C Example // Set the region to a 5x5 panel in the upper left
t_rect region;
region.origin.x = 0;
region.origin.y = 0;
region.size.width = 5;
region.size.height = 5;
short result = sys_txt_set_region(0, ®ion);
if (result) {
 // Handle the error
}

Assembly lea region,a0
; Set the region values…

move.w #$69,d0 ; Function: sys_txt_set_region
move.w #0,d1 ; Screen
move.l a0,d2 ; Pointer to the region block
trap #15
; D0 contains the result

Function 0x6A sys_txt_get_region

Description Gets the origin and size of the rectangle describing the current region.

The call takes a screen number and a pointer to a t_rect structure to fill out with
the current information.

Returns 0 on success, any other number is an error.

Prototype short sys_txt_get_region(short screen, p_rect region);

C Example t_rect region;
short result = sys_txt_get_region(0, ®ion);
if (result) {
 // Handle the error
}

Assembly lea region,a0
; Set the region values…

move.w #$6A,d0 ; Function: sys_txt_get_region
move.w #0,d1 ; Screen
move.l a0,d2 ; Pointer to the region block
trap #15
; D0 contains the result

Function 0x6B sys_txt_set_color

Description Set the foreground and background color to use for subsequent prints to the
screen.

Takes the screen number and the color indexes for foreground and background
colors (0 – 15).

Returns 0 on success, any other number is an error.

Prototype Short sys_txt_set_color(short screen,
 short foreground,
 short background);

C Example // Set the text color to cyan on black (in standard colors)
sys_txt_set_color(0, 6, 0);

Assembly move.w #$6B,d0 ; Function: sys_txt_set_color
move.w #0,d1 ; Screen
move.w #6,d2 ; Foreground = color #6 (cyan)
move.w #0,d3 ; Background = color #0 (black)
trap #15
; D0 contains the result

Function 0x6C sys_txt_get_color

Description Gets the current foreground and background color settings.

Takes the screen number and two pointers: one for the foreground color value,
and one for the background color value.

Returns 0 on success, any other number is an error.

Prototype Short sys_txt_get_color(short screen,
 short * foreground,
 short * background);

C Example // Gets the text color for the screen
short foreground = 0;
short background = 0;
if (sys_txt_get_color(0, &foreground, &background)) {
 // Handle error
}

Assembly move.w #$6C,d0 ; Function: sys_txt_get_color
move.w #0,d1 ; Screen
move.l #fore,d2 ; Foreground variable
move.l #back,d3 ; Background variable
trap #15
; D0 contains the result

Function 0x6D sys_txt_set_xy

Description Sets the position of the cursor on the screen.

The call takes the number of the screen and the character row (y) and column
(x) of the cursor. The cursor positions are specified relative to the origin of the
current region set on the screen, so (0, 0) will be the origin of the region, (0, 1)
will be the character position right below the origin, and so on.

Prototype void sys_txt_set_xy(short screen, short x, short y);

C Example // Move the cursor to the home position in the current region

sys_txt_set_xy(0, 0, 0);

Assembly move.w #$6D,d0 ; Function: sys_txt_set_xy
move.w #0,d1 ; Screen
move.w #0,d2 ; Column: x = 0
move.w #0,d3 ; Row: y = 0
trap #15

Function 0x6E sys_txt_get_xy

Description Gets the position of the text cursor relative to the origin of the current region.

Takes two parameters:

screen—the number of the screen

position

Prototype void sys_txt_get_xy(short screen, p_point position);

C Example // Get the cursor position
t_point position;
sys_txt_get_xy(0, &position);

Assembly move.w #$6E,d0 ; Function: sys_txt_get_xy
move.w #0,d1 ; Screen
move.l #position,d2 ; Pointer to structure
trap #15

Function 0x6F sys_txt_scroll

Description Scroll the text in the current region. Takes three parameters:

screen—the number of the screen

horizontal—the amount to scroll horizontally (negative moves the text to the
left, positive to the right)

vertical—the amount to scroll vertically (negative moves the text down,
positive moves it up)

NOTE: this system call affects only the character cells within the current
region. Characters that would scroll out of the current region are lost. Also,
those cells which would take characters from outside the region are filled with
blanks (and their colors are set to the current text color of the screen). If you
need to scroll the entire screen, be sure to reset the region to a rectangle of 0
size to set the region to the full screen.

This system call can scroll in either the vertical or horizontal direction, but it
can also scroll in both directions simultaneously.

Prototype void sys_txt_scroll(short screen,
 short horizontal,
 short vertical);

C Example // Scroll the current region down by two rows
sys_txt_scroll(0, 0, -2);

Assembly move.w #$6F,d0 ; Function: sys_txt_scroll
move.w #0,d1 ; Screen
move.w #0,d2 ; horizontal = 0
move.w #$FFFE,d3 ; vertical = -2
trap #15

Function 0x71 sys_txt_set_cursor_vis

Description Sets the visibility of the text cursor.

Takes two parameters:

screen—the number of the screen

is_visible—0 (FALSE) for hidden, any other number for visible

Prototype void sys_txt_set_cursor_vis(short screen,
 short is_visible;

C Example // Hide the cursor on screen 0
sys_txt_cursor_vis(0, 0);

Assembly move.w #$71,d0 ; Function: sys_txt_cursor_vis
move.w #0,d1 ; Screen
move.w #0,d2 ; is_visible = 0
trap #15

Function 0x72 sys_txt_get_sizes

Description Gets the size of the screen in total pixels (not taking the border into
consideration) and visible characters (taking the border into account).

Takes three parameters:

screen—the number of the screen
text_size—a pointer to a t_extent to fill with the size of the screen in visible
characters (taking the border into account)

pixel_size—a pointer to a t_extent to fill with the size of the screen in pixels

(ignoring the border)

NOTE: text_size and pixel_size can be null (0), in which case that
structure will not be filled out, so you do not have to provide a t_extent for a
measurement you do not need.

Prototype void sys_txt_get_sizes(short screen,
 p_extent text_size,
 p_extent pixel_size);

C Example // Hide the cursor on screen 0
t_rect text_matrix;
t_rect pixel_matrix;
sys_txt_get_sizes(0, &text_matrix, &pixel_matrix);

Assembly move.w #$72,d0 ; Function: sys_txt_get_sizes
move.w #0,d1 ; Screen
move.l #text_matrix,d2 ; Pointer to the text t_extent
move.l #pixel_matrix,d3 ; Pointer to the pixel t_extent
trap #15

User Programs

Memory Map (680x0)
There are four key blocks of system RAM.

CPU Vectors (0x0000:0000–0x0000:03FF): This is memory reserved for the CPU exception
vectors. While user programs may over-write a vector here, Foenix/MCP provides an
interrupt framework around them to simplify the process and keep it uniform across systems.

Kernel Data (0x0000:0400–0x0000:1FFF): This area of memory is reserved for data storage
by Foenix/MCP. It may be freed up in future, but currently it is used for variables that are
initialized from flash during the boot process.

User Stack (0x0000:2000–0x0000:FFFF): This area of memory is free for the user program to
use as it sees fit, but by default Foenix/MCP will set the user stack to start at 0x0001:0000,
and this is where it will push arguments when starting execution.

User Area (0x0001:0000-RAMTOP): This area is free to use for the user program. Generally, it
is recommended that programs load to 0x0001:0000, but the system will not enforce that
generally. The upper limit of this area is variable, and a user program should use the system
call sys_mem_get_ramtop to find the current limit.

Kernel Storage and TSR Area (RAMTOP—0x003F:FFFF): This block at the top of system RAM
is where the kernel will store its heap, stack, and variable storage. Additionally, user
programs could install code or data into this protected area by reserving memory (which will
move RAMTOP down). Otherwise, a user program should not alter memory here.

Execution Process
To start a user program, the kernel will load the file into memory using the sys_fsys_load
system call, which will interpret the file format to determine where and how to load the file
into memory. The kernel will then initialize the user stack and push the parameters for the
call to the user program. The kernel follows the general C convention of passing two
arguments: argc and argv, where argc is an int count of arguments, and argv is an array of
character pointers containing the actual parameters.

The kernel will then call the user program (with JSR) while dropping out of supervisor mode.

NOTE: while argc and argv, will be on the user stack, they are also available in D1 and A1,
respectively.

Upon completion, the user program should quit by calling the system call sys_exit. This
will ensure that the command line utility can restart correctly.

vectors

User stack and
general use

User program
and storage

Kernel Storage

0000:0000

0000:0400

0001:0000

003F:FFFF

<<=sys_mem_get_ramtop()

System RAM

Kernel DATA
0000:2000

The Boot Process
On reset, Foenix/MCP starts booting by initializing itself and the underlying hardware.
Device drivers are installed, devices are set to neutral, initial settings, and the boot splash
screen is shown.

Next, Foenix/MCP checks for a boot device. A default boot device is determined by
examining the boot DIP switches on the Foenix, but this setting can be over-ridden by the
user pressing the appropriate keys during the boot splash screen. These keys allow the user to
change the boot device to the floppy drive (if present), SD card, or hard drive. The user can
also just quickly boot from the default device by pressing the space bar or jump immediately
to the command prompt by pressing the RETURN key.

After the boot device (if any) has been determined, Foenix/MCP tries to see if sector 0 on the
device contains a valid boot sector. If it does, that boot sector code is executed. If not, the
MCP will check for the file system/mcp.init on the boot drive. If it is present, it will be read,
and all the lines in it will be executed as if the user typed them in the command line. If it is
not present, MCP will look for /hd/system/mcp.init.

After the initialization file has been run, the command line utility proper will be started, and
the user can run commands as normal.

Boot Sectors

Hard Drive and SD Card

The boot sectors for both the SD card and the hard drive will be in physical sector 0 of the
device and will be the master boot record of the device. To check to see if the sector is
bootable, Foenix/MCP will check for a CPU id and boot signature at the following offsets:

Offset Value/Purpose

0x004 CPU ID… this byte lists the CPU code number for the machine language in the
boot sector.

0x006 0xF0 – First byte of the boot signature
0x007 0xE1 – Second byte of the boot signature

The boot sector will be loaded into memory at a processor specific location (on the M680x0
processors, this location will be 0x00000400, immediately after the vectors). If it is bootable on
that Foenix, control will be transferred to the first byte of the sector. Typically, this will be a

jump or branch instruction into the rest of the sector. Code should not extend past offset
0x1B8, to leave room for a boot sector signature and the partition information.

Floppy Drive

Systems that support a floppy drive (e.g. A2560K, GenX) will also allow the system to boot
from the floppy disk’s volume boot record (sector 0) in much the same was as the hard drive
and SD card’s master boot record are supported. In order to maintain compatibility with the
FAT file system, the offsets to the various required fields are somewhat different:

Offset Value/Purpose
0x060 First byte of machine code. This will likely be a branch instruction in the target

system’s machine language and will be the first instruction executed after loading
the boot sector.

0x064 CPU ID… this byte lists the CPU code number for the machine language in the
boot sector.

0x066 0xF0 – First byte of the boot signature
0x067 0xE1 – Second byte of the boot signature

The boot sector will be loaded into memory at a processor specific location (on the M680x0
processors, this location will be 0x00000400, immediately after the vectors). If it is bootable on
that Foenix, control will be transferred to the instruction at 0x00000460. Typically, this will be
a jump or branch instruction into the rest of the sector. Code should not extend past offset
0x1FE, to leave room for a sector signature.

NOTE: the CPU ID included in the boot sector much match the scheme listed below (the same
as the CPU ID in the system registers), and the machine language instructions included in the
boot sector must match that system. For systems that support multiple CPUs, a boot sector
will work only on the matching CPU.

Extending the System
Foenix/MCP is designed to be somewhat extensible. Since it is meant to be small and stay as
much out of the way of the user programs as possible, Foenix/MCP does not have all of the
features that absolutely everyone will want. Therefore, there are four main ways that the user
can extend the capabilities of Foenix/MCP: channel device drivers, block device drivers,
keyboard translation tables, and file loaders.

Channel Device Drivers
Channel device drivers provide the functions needed by Foenix/MCP to support a channel
opened on a device. With some exceptions, each channel system call is routed through the
channel to the correct channel driver function. Channel drivers can be added to the system
using the sys_chan_register call, specifying all of the relevant information about the driver
using a structure:

struct s_dev_chan {
 short number; // Number of the device
 char * name; // Name of the device

 FUNC_V_2_S init; // Initialize the device
 FUNC_CBS_2_S open; // Open a new channel for the device
 FUNC_V_2_S close; // Close a channel
 FUNC_CBS_2_S read; // Read a sequence of bytes from the device
 FUNC_CBS_2_S readline; // Read a line of text from the device
 FUNC_C_2_S read_b; // Read a single byte from the device
 FUNC_CcBS_2_S write; // Write a sequence of bytes to the device
 FUNC_CB_2_S write_b; // Write a single byte to the device
 FUNC_C_2_S status; // Return the status of the device
 FUNC_C_2_S flush; // Commit any pending writes to the device
 FUNC_CLS_2_S seek; // Set the in/out position of the device
 FUNC_CSBS_2_S ioctrl; // Send commands to the device or driver
};

Most of the fields in the structure are function pointers, which have one of the following
types:

typedef short (*FUNC_V_2_S)();
typedef short (*FUNC_CBS_2_S)(p_channel, unsigned char *, short);
typedef short (*FUNC_C_2_S)(p_channel);
typedef short (*FUNC_CcBS_2_S)(p_channel, const unsigned char *, short);
typedef short (*FUNC_CB_2_S)(p_channel, unsigned char);
typedef short (*FUNC_CLS_2_S)(p_channel, long, short);
typedef short (*FUNC_CSBS_2_S)(p_channel, short, unsigned char *, short);

Where p_channel is a pointer to a channel structure, which maps an open channel to its
device and provides space for the channel driver to store data relevant to that particular
channel. The channel device drivers are passed this structure directly by the channel system
calls, rather than the channel number used by user programs.

struct s_channel {
 short number; // The number of the channel
 short dev; // The number of the channel's device
 unsigned char data[32]; // A block of channel specific data
};

To implement a driver for a new channel device, all of the functions should be implemented
(if a function is not needed, it should still be implemented but return a 0). Then a s_chan_dev

structure should be allocated and filled out, with the number being the number of the device
to support, and name points to a suitable name for the device.

Most of the functions needed are directly mapped to to the channel system calls of the same
name, and they simply perform the operations needed for those calls. Three functions should
be called out for special consideration:

The init function performs initialization functions. It is called once per device. This can be a
place for setting up the device itself or installing interrupt handlers for the device.

The open function is called when the user program opens a channel, after a channel structure
has been allocated for the channel. This is the correct place for setting up a connection for a
specific transaction on the device. This is another point where interrupt handlers might be
installed or turned on, or when specific connection settings are made in the device (like serial
baud rate).

The close function is called when the user program closes a previously opened channel. This
function should perform any house keeping functions needed before the channel is returned
to the kernel’s pool. In particular, if the device buffers writes, any writes that are still pending
should be written to the device.

Block Device Drivers
Block device drivers are used by Foenix/MCP to provide block level access to block devices
like the SD card, floppy drive, and IDE/PATA hard drive. The main use of block device
drivers is the FatFS file system, which is used to provide file channels. Block drivers can be
added to the system in a similar way to channel device drivers by implementing the functions
needed by Foenix/MCP and registering them using the sys_bdev_register call. The
information about the block device is provided through a s_block_dev structure:

struct s_dev_block {
 short number; // The number of the device
 char * name; // The name of the device
 FUNC_V_2_S init; // Initialize the device
 FUNC_LBS_2_S read; // Read a block from the device
 FUNC_LcBS_2_S write; // Write a block to the device
 FUNC_V_2_S status; // Get the status of the device
 FUNC_V_2_S flush; // Ensure that any pending writes are completed
 FUNC_SBS_2_S ioctrl; // Issue a control command to the device
};

The block device structure is similar to the channel device in that it mostly provides the
functions needed to implement the block system calls, using the following function pointer
types:

typedef short (*FUNC_LBS_2_S)(long, unsigned char *, short);

typedef short (*FUNC_LcBS_2_S)(long, const unsigned char *, short);
typedef short (*FUNC_SBS_2_S)(short, unsigned char *, short);
typedef short (*FUNC_LB_2_S)(long, short);

One difference with the channel drivers is that a block driver is tied to its specific device,
therefore the handler functions do not take a device number or other structure.

As before, when registering a driver, the device number is provided in the number field, and a
useful name is provided in name. The init function will be called once to allow the driver to
initialize the device, install interrupt handlers, or perform other functions.

Otherwise, read and write perform the getblock and putblock functions, and take a block
address, a buffer of bytes, and a buffer size as arguments. The status and flush functions
map to the sys_bdev_status and sys_bdev_flush calls. And finally, ioctrl maps to the
sys_bdev_ioctrl function, and takes a command number, a buffer of bytes, and a size of the
buffer as arguments.

Keyboard Translation Tables
By default, Foenix/MCP supports the US standard QWERTY style keyboard, but other
keyboards can be used by providing custom translation tables to map from Foenix scan codes
to 8-bit character codes. These tables can be activated in the kernel by calling the
sys_kbd_layout system call, providing it with the appropriate translation tables. There are
eight tables that are needed, each are 128 bytes long, and they are provided as consecutive
tables in the following order:

1. UNMODIFIED: This table maps scan codes to characters when no modifier keys are
pressed.

2. SHIFT: This table maps scan codes when either SHIFT key is pressed.
3. CTRL: This table maps scan codes when either CTRL key is pressed.
4. CTRL_SHIFT: This table maps scan codes when SHIFT and CTRL are both pressed.
5. CAPS: This table maps scan codes when CAPSLOCK is down but SHIFT is not pressed.
6. CAPS_SHIFT: This table maps scan codes when CAPSLOCK is down and SHIFT is

pressed.
7. ALT: This table maps scan codes when either ALT is pressed.
8. ALT_SHIFT: This table maps scan codes when ALT is pressed and either SHIFT or

CAPSLOCK are in effect (but not both).
For keys on the right side of the keyboard (cursor keys, number pad, INSERT, etc.), NUMLOCK
being down causes the CAPS or CAPS_SHIFT tables to be used. For those keys, CTRL and ALT
will have no effect when NUMLOCK is down.

In the current code, character codes 0x80 through 0x95 are reserved. These codes are used to
designate special keys like function keys, cursor keys, etc. This means that Foenix/MCP
cannot directly map characters using those code points to key presses, but in the various ISO-

8859 and related standards, those code points are reserved for control codes. Also, this design
choice allows for maximum flexibility in keyboard layouts, since all these keys can be
mapped to whatever scan codes the user desires.

Key Code
Cursor UP 0
Cursor Down 0
Cursor Left 0
Cursor Right 0
HOME 0
INS 0
DELETE 0
END 0
PAGE UP 0
PAGE DOWN 0
F1 0
F2 0
F3 0
F4 0
F5 0
F6 0
F7 0
F8 0
F9 0
F10 0
F11 0
F12 0
MONITOR 0
CTX SWITCH 0x97
MENU HELP 0x98

File Loaders
Out of the box, Foenix/MCP supports only two simple file formats executables: PGX, PGZ,
and ELF. Others may be supported in the future. Since this may not meet the needs of a user,
the loading and execution of files may be extended using the sys_fsys_register_loader
system call. This call takes an extension to map to a loader, and a pointer to a loader routine.

A loader routine can be very simple: it takes a channel to read from, an address to use as an
optional destination, and a pointer to a long variable in which to store any starting address
specified by an executable file.

To actually load the file, the loader just has to read the data it needs from the already open file
channel provided. If a destination address was provided by the caller (any value other than

0), the loader should use that as the destination address, otherwise it should determine from
the file or its own algorithm a reasonable starting address.

Once it has finished loading the file, if it had determined that the file is executable and knows
the starting address, it should store that at the location provided by the start pointer.

Finally, if all was successful, it should return a 0 to indicate success. Otherwise, it should
return an appropriate error number.

Example:

short fsys_pgz_loader(short chan, long destination, long * start) {
…
*start = start_address;
return 0;

}

Appendix

Console IOCTRL Commands
The console channel driver supports the following commands for sys_chan_ioctrl. None of
these IOCTRL commands require a buffer, so passing NULL for the buffer and 0 for the size
is recommended.

Number Name Purpose
1 CON_IOCTRL_ANSI_ON Turn on ANSI escape sequence processing for all data written to

the console screen. (Set by default on reset.)
2 CON_IOCTRL_ANSI_OFF Turn off ANSI escape sequence processing for all data written to

the console screen. Only simple ASCII controls will be
processed.

3 CON_IOCTRL_ECHO_ON Turn on character echoing for sys_chan_read_b (set by
default on reset).

4 CON_IOCTRL_ECHO_OFF Turn off character echoing for sys_chan_read_b.
5 CON_IOCTRL_BREAK Check to see if the user has pressed the BREAK key sequence.

sys_chan_ioctrl will return if the BREAK key was pressed,
and 0 if not. On all Foenix machines, CTRL-C (code point 0x03)
will be treated as the BREAK key. On the A2560K, the
combination Foenix-ESC will also work as the BREAK key.

6 CON_IOCTRL_CURS_ON The text mode cursor should be visible
7 CON_IOCTRL_CURS_OFF The text mode cursor should be hidden

Floppy IOCTRL Commands
The FDC driver supports the following commands for sys_bdev_ioctrl. None of these
IOCTRL commands require a buffer, so passing NULL for the buffer and 0 for the size is
recommended.

Number Name Purpose
1 FDC_CTRL_MOTOR_ON Turn on the floppy drive’s spindle motor
2 FDC_CTRL_MOTOR_OFF Turn off the floppy drive’s spindle motor
3 FDC_CTRL_CHECK_CHANGETurns on the floppy drive’s spindle motor and forces an update

of its status.

ANSI Terminal Codes
Foenix/MCP supports a basic subset of the VT102 ANSI terminal codes. The following escape
sequences are supported:

Sequence Name Function
ESC[# @ ICH Insert characters
ESC [# A CUU Move the cursor up
ESC [# B CUF Move the cursor forward
ESC [# C CUB Move the cursor back
ESC [# D CUD Move the cursor down
ESC [# J ED Erase the screen
ESC [# K EL Erase the line
ESC [# P DCH Delete characters
ESC [# ; # H CUP Set the cursor position
ESC [# m SGR Set the graphics rendition

For the SGR sequence, a fairly limited set of codes are currently supported, mainly to do with
the color and intensity of the text:

Code Function
0 Reset to defaults
1 High intensity / Bold
2 Low intensity / Normal
22 Normal
30 – 37 Set foreground color
40 – 47 Set background color
90 – 97 Set bright foreground color
100 – 107 Set bright background color

NOTE: If the program does not want the console to interpret ANSI codes, this feature can be
turned off by calling sys_chan_ioctrl on the console channel to be changed. A command of
0x01 will turn ANSI interpretation on, while a command of 0x02 will turn it off. When ANSI

interpretation is turned off, only the core ASCII control characters will still be recognized:
0x08 (backspace), 0x09 (TAB), 0x0A (linefeed), and 0x13 (carriage return).

For key presses, the following escape codes are sent to the calling program, when one of the
sys_chan_read functions is used on either console channel. Note that this feature is always
on in the current system. Also, in the following codes, there are no actual spaces.

Key Code
ESC ESC ESC
Cursor UP ESC [# A
Cursor Down ESC [# B
Cursor Left ESC [# C
Cursor Right ESC [# D
HOME ESC [1 ; # ~
INS ESC [2 ; # ~
DELETE ESC [3 ; # ~
END ESC [4 ; # ~
PAGE UP ESC [5 ; # ~
PAGE DOWN ESC [8 ; # ~
F1 ESC [11 ; # ~
F2 ESC [12 ; # ~
F3 ESC [13 ; # ~
F4 ESC [14 ; # ~
F5 ESC [15 ; # ~
F6 ESC [17 ; # ~
F7 ESC [18 ; # ~
F8 ESC [19 ; # ~
F9 ESC [20 ; # ~
F10 ESC [21 ; # ~
F11 ESC [23 ; # ~
F12 ESC [24 ; # ~
MONITOR ESC [30 ; # ~
CTX SWITCH ESC [31 ; # ~
MENU HELP ESC [32 ; # ~

The “#” in the sequences above represent an optional modifier code. If SHIFT, CTRL, or ALT
is pressed with the key, the number sign is replaced with a decimal number representing a
bitfield of the modifier keys, followed by a semicolon. The bit values are: SHIFT = 1, ALT = 2,
CTRL = 4, and OS (Foenix) = 8.

Keyboard Scan Codes
Foenix/MCP uses the same Foenix scan codes that the original 65816 Foenix kernel used.
These scan codes are derived from the standard “set 1” scan codes with modifications to get
the scan codes to fit within a single byte. The base scan codes for a US QWERTY keyboard are
listed below.

When a key is pressed or released, bits 0 – 6 are the same, and follow the table below. A
“make” scan code is sent when the key is pressed. For make scan codes, bit 7 is clear (0). A
“break” scan code is sent when a key is released. For break scan codes, bit 7 is set (1).

Example—the user presses and releases the space bar: Two scan codes will be sent. First, the
make code 0x39 will be sent. Second, the break scan code of 0xB9 will be sent when the key is
released.

0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_

_0 Q D B F6 KP2 PRSCRN

_1 ESC W F N F7 KP3 PAUSE

_2 ! 1 E G M F8 KP0 INS

_3 @ 2 R H < , F9 KP. HOME

_4 # 3 T J > . F10 MONITOR PGUP

_5 $ 4 Y K ? / NUMLOCK CTX DEL

_6 % 5 U L RSHIFT SCRLOCK HELP END

_7 ^ 6 I : ; KP* KP7 F11 PGDN

_8 & 7 O “ ’ LALT KP8 F12 UP

_9 * 8 P ~ ` SPACE KP9 RBLANK LEFT

_A (9 { [LSHIFT CAPS KP- LBLANK DOWN

_B) 0 }] | \ F1 KP4 LFNX/OS RIGHT

_C _ - ENTER Z F2 KP5 RALT KP/

_D + = LCTRL X F3 KP6 RFNX/MEN KPENTER

_E BSPACE A C F4 KP+ RCTRL

_F TAB S V F5 KP1

Printer Support
On Foenix computers with a parallel port (e.g. A2560 K), simple support for a printer is
provided on the LPT device (channel device #4). To use the printer, a program will first need
to open a channel to the printer device, using sys_chan_open, checking for a valid channel
number (usually greater than 0). After that, it can write to the channel using sys_chan_write
or sys_chan_write_b. The sys_chan_write calls will return a number greater than or equal
to 0 on success… a negative number will indicate an error (a timeout, a general error from the
printer, or the printer is out of paper). When the job is complete, the channel should be closed
using sys_chan_close. At any time, the status of the channel can be checked with the
sys_chan_status call, which returns a word of status bits.

Printer Status Codes

The system call sys_chan_status can return the following status bit flags:

Bit Label Meaning

0x02 LPT_STATUS_ERROR The printer has reported an error of some sort (matches
general channel status usage)

0x08 LPT_STATUS_WRITABLE The printer can accept characters (matches general channel
status usage)

0x10 LPT_STATUS_PAPER The printer is out of paper (printer specific)
0x20 LPT_STATUS_ONLINE The printer is online (printer specific)

Note: the Foenix/MCP printer driver is very low level, SPP only support. This means that the
parallel port can be used only for writing to the printer. The Foenix computers with a parallel
port should be able to support EPP and ECP modes, but the driver does not support this and
custom code would need to be written. As such, there is no LPT_STATUS_READABLE bit
returned. LPT is write only for this version of MCP.

Font Support
Foenix/MCP offers support for two different sizes of font for the text devices. Some Foenix
text screens support only 8x8 fonts, but some can handle multiple sizes. For simplicity’s sake,
Foenix/MCP supports only two font sizes: 8x8, and 8x16. The text capabilities structure
returned by sys_txt_get_caps has a member which lists the font sizes supported (see
below). The sys_txt_set_font system call will return an error if the caller attempts to set a
font of a size not supported by the device.

The font settings take very simple font files. Each character is represented by eight or 16 bytes
(depending on the font size) arranged one byte per row starting from the top of the character.
The file itself is simply the representation of all 256 characters in the font from character 0 to
character 255. If the font file is 2,048 bytes long, the font is assumed to be 8x8. Otherwise it is
assumed to be 8x16.

Useful Data Structures

Time
// Structure used for real time clock functions
struct s_time {
 short year; // Year (0 – 9999)
 short month; // Month (1 = January through 12 = December)
 short day; // Day of month (1 - 31)
 short hour; // Hour (0 – 12 / 23)
 short minute; // Minute (0 - 59)
 short second; // Seconds (0 - 59)

 short is_pm; // For 12-hour clock, 1 = PM
 short is_24hours; // 1 = clock is 24-hours, 0 = clock is 12-hours
}

Directory Entries
// Structure used for directory entry information
struct s_file_info {
 long size; // Size of the file in bytes
 unsigned short date; // Creation date
 unsigned short time; // Creation time
 unsigned char attributes; // Attribute bits
 char name[MAX_PATH_LEN]; // Name of the file (256 bytes)
}

File attribute bits:
0x01 Read only

0x02 Hidden file

0x04 System file

0x10 Directory

0x20 Archive

System Information
/*
 * Structure to describe the hardware
 */
struct s_sys_info {
 unsigned short mcp_version; // Current version of the MCP kernel
 unsigned short mcp_rev; // Current revision of the MCP kernel
 unsigned short mcp_build; // Current build # of the MCP kernel
 unsigned short model; // Code to say what model of machine this is
 const char * model_name; // Human readable name of the model
 unsigned short cpu; // Code to say which CPU is running
 const char * cpu_name; // Human readable name for the CPU
 unsigned int cpu_clock_khz; // Speed of the CPU clock in kHz
 unsigned long fpga_model; // FPGA model number
 unsigned short fpga_version; // FPGA version
 unsigned short fpga_subver; // FPGA sub-version
 long system_ram_size; // The number of bytes of system RAM on the board
 bool has_floppy; // TRUE if the board has a floppy drive installed
 bool has_hard_drive; // TRUE if the board has a PATA device installed
 bool has_expansion_card; // TRUE if an expansion card is installed
 bool has_ethernet; // TRUE if an ethernet port is present
 unsigned short screens; // How many screens are on this computer
};

Model Numbers

The following numbers are used to distinguish between the different models of Foenix
computers. These numbers are also used by the makefile.

Model Number
C256 FMX 0

C256 U 1

C256 GenX 4

C256 U+ 5

A2560 U+ 6

A2560 X 7

A2560 U 9

A2560 K 11

CPU Numbers

The following numbers are used to distinguish between the different CPUs. These numbers
are also used by the makefile.

CPU Number
M68SEC000 0
M68020 1
M68EC020 2
M68030 3
M68EC030 4
M68040 5
M68040V 6
ME68EC040 7
i486DX 50 8
i468DX 60 9
i468DX4 10

Screen Information
/*
 * Structure to specify the size of a rectangle
 */
typedef struct s_extent {
 short width; /**< The width of the region */
 short height; /**< The height of the region */
} t_extent, *p_extent;

/*
 * Structure to specify the location of a point on the screen
 */
typedef struct s_point {
 short x; /**< The column of the point */
 short y; /**< The row of the point */
} t_point, *p_point;

/*
 * Structure to specify a rectangular area on the screen
 */

typedef struct s_rect {
 t_point origin; /**< The upper-left corner of the rectangle */
 t_extent size; /**< The size of the rectangle */
} t_rect, *p_rect;

/*
* Structure to specify the capabilities of a screen’s text driver
*/
typedef struct s_txt_capabilities {
 short number; /**< The unique ID of the screen */
 short supported_modes; /**< The display modes supported on this screen */
 short font_size_count; /**< The number of supported font sizes */
 p_extent font_sizes; /**< Pointer to a list of t_extent listing all
supported font sizes (in pixels) */
 short resolution_count; /**< The number of supported display resolutions */
 p_extent resolutions; /**< Pointer to a list of t_extent listing all
supported display resolutions (in pixels) */
} t_txt_capabilities, *p_txt_capabilities;

Screen Mode Flags

The following numbers are the flags used to specify display modes:

Mode Number
TXT_MODE_TEXT 0x0001
TXT_MODE_BITMAP 0x0002
TXT_MODE_SPRITE 0x0004
TXT_MODE_TILE 0x0008
TXT_MODE_SLEEP 0x0010

Error Codes

PGX File Format
The PGX file format is the simplest executable format. It is similar in scale to MS-DOS’s COM
format, or the Commodore PRG format. It consists of a single segment of data to be loaded to
a specific address, where that address is also the starting address.

PGX starts with a header to identify the file and the starting address:

• The first three bytes are the ASCII codes for “PGX”.

• The fourth byte is the CPU and version identification byte. Bits 0 through 3 represent
the CPU code, and bits 4 through 7 represent the version of PGX supported. At the
moment, there is just version 0. The CPU code can be 1 for the WDC65816, or 2 for the
M680x0.

• The next four bytes (that is, bytes 4 through 7) are the address of the destination, in
big-endian format (most significant byte first). This address is both the address of the

location in which to load the first byte of the data and is also the starting address for
the file.

All bytes after the header are the contents of the file to be loaded into memory.

PGZ File Format
The PGZ is a more complex format that supports multiple loadable segments, but is still to be
loaded in set locations in memory.

The first byte of the file is a file signature and also a version tag. If the first byte is an upper
case Z, the file is a 24-bit PGZ file (i.e. all addresses and sizes specified in the file are 24-bits). If
the file is a lower case Z, the file is a 32-bit PGZ file (all address and sizes are 32-bits in
length). Note that all addresses and sizes are in little endian format (that is, least significant
byte first).

After the initial byte, the remainder of the PGZ file consists of segments, one after the other.
Each segment consists of two or three fields:

Field Size Description
address 3 (“Z”) or 4 (“z”) bytes The target address for this segment
size 3 (“Z”) or 4 (“z”) bytes The number of bytes in the data field
data size bytes The data to be loaded [optional]

For a particular segment, if the size field is 0, there will be no bytes in the data field, and the
segment specifies the starting address of the entire program. At least one such segment must
be present in the PGZ file for it to be executable. If more than one is present, the last one will
be the one used to specify the starting address.

What is Missing
Currently, Foenix/MCP is not complete. There are still some features to implement or finalize:

• Disk partitioning and formatting commands

• Support for partitioned drives

	Overview
	Foenix/MCP Goals
	Foenix/MCP Anti-goals
	Copyright Information

	Devices
	Channel Devices
	Block Devices
	Files Channels
	Paths

	Command Line Utility
	Commands
	Settings
	System Variables
	Editing Keys

	System Calls
	Core Calls
	Channel Calls
	Block Calls
	File System Calls
	Process and Memory Calls
	Miscellaneous Calls
	Text Display Calls

	User Programs
	Memory Map (680x0)
	Execution Process

	The Boot Process
	Boot Sectors
	Hard Drive and SD Card
	Floppy Drive

	Extending the System
	Channel Device Drivers
	Block Device Drivers
	Keyboard Translation Tables
	File Loaders

	Appendix
	Console IOCTRL Commands
	Floppy IOCTRL Commands
	ANSI Terminal Codes
	Keyboard Scan Codes
	Printer Support
	Printer Status Codes

	Font Support
	Useful Data Structures
	Time
	Directory Entries

	System Information
	Model Numbers
	CPU Numbers

	Screen Information
	Screen Mode Flags

	Error Codes
	PGX File Format
	PGZ File Format

	What is Missing

