
 ________ ________ ______ _________ ___ ___ ___ ________ ___ ________ ___ _________ ________
 |\ _____\\ __ \|\ ___\|\ ___ \|\ \ |\ \ / /| |\ __ \|\ \|\ ____\|\ \|\ ___ \|\ ____\
 \ \ __/\ \ \|\ \ \ __ \ \ \\ \ \ \ \ \ \ \/ / / \ \ \|\ \ \ \ \ ___|\ \ \ \ \\ \ \ \ ___|
 \ \ __\\ \ \\\ \ \ _\ \ \ \\ \ \ \ \ \ \ / / \ \ _ _\ \ \ _____ \ \ \ \ \\ \ \ \ \ ___
 \ \ _| \ \ \\\ \ \ ___\ \ \\ \ \ \ \ / \/ \ \ \\ \\ \ \|____|\ \ \ \ \ \\ \ \ \ \|\ \
 \ __\ \ _______\ _____\ __\\ __\ __\/ /\ \ \ __\\ _\\ _______\ \ __\ __\\ __\ _______\
 \|__| \|_______|\|_____|\|__| \|__|\|__/__/ /\ __\ \|__|\|__|\|__|_________\|__|\|__| \|__|\|_______|
 |__|/ \|__| \|_________|

commentary and information
concerning your

FOENIX RETRO SYSTEMS

ISSUE #1
July 10, 2022

This is the first news bulletin which will be issued up to 12 times a year for enthusiasts
of retro technology and specifically, Foenix Retro Systems users throughout the world.

You may have been auto-subscribed to this bulletin, but may opt out at any time (see below).

Whether you own a Foenix now, or intend on purchasing a Foenix in the future, you may find
this a valuable resource to keep up to date, including:

1.Information on software available

2.Information and specifications on hardware, add-ons, & modifications
from Foenix Retro and elsewhere.

3.Information on problem shooting (also known as “troubleshooting” :) and
Foenix FPGA and kernel releases, and a variety of other information.

Below is a free copy of our first issue.

Now we have some good news.

The Foenix Marketplace (AppStore) will soon be available and will provide downloadable
apps, utilities, code samples, and binary data released publicly, or from the Foenix Rising
publication.

To unsubscribe from Foenix Rising, please send an email to: with a
subject of “unsubscribe”.

 Thank you for your support and interest,

 Michael (EMwhite)

I would like to thank Stefany Allaire and the Foenix community for being welcoming, and for
entrusting me to publish this newsletter. I would also like to thank those that contributed
to, and offered feedback on issue #1.

Most of all, I need to acknowledge the publishers and contributors of The Transactor, the
original TPUG News, TPUG Magazine, and published content from user groups that began in the
late 70’s and early 80’s of the last century.

Well before the world-wide-web, information managed to make its way to the far reaches of the
world thanks to efforts of people involved in these endeavors. We stand on the shoulders of
giants. The retro-style layout of this insert is in their honor.

(Inaugural issue insert)

(44 years, 2 months, and 10 days after the inaugural “The Transactor”
bulletin release, Foenix Rising is here)

http://csbruce.com/cbm/transactor/pdfs/trans_v1_i01.pdf
https://www.tpug.ca/tpug-media/torpet/Torpet_Issue_01_1980_Nov.pdf
https://www.tpug.ca/tpug-media/tpugmag/TPUG_Issue_01_1984_Feb.pdf

This page is mostly blank

VTOC (volume table of contents)

Hello Foenix

Welcome to the inaugural issue of
Foenix Rising, a Newsletter for
Foenix Retro enthusiasts.

Why a Newsletter and not a ‘blog’?

30 years young, the web is still
difficult to navigate; despite the
efforts of archive.org, nothing on the
internet is permanent, and though we
all try, we’ve not come close to
escaping the wrath of ads.

Thankfully, we can still get our hands
on .pdfs or bitmap scans of mags
such as Transactor and other classic
80’s and 90’s Computing Journals.
For as long as filters are able to
render ancient formats, content like
this will be viewable and printable.

If you must ‘print’, please do so
responsibly, and store it for reference
and discovery by future generations
of our kind.

What to expect: a mix of Foenix
updates, developer published
technical articles, activities,
interviews, and a few surprises; the
aim is to inform, entertain, and
enrich your Foenix experience.

Foenix Rising is currently a one
person endeavor, but the hope is to
publish content and code examples
from members of the community.
Thank you for your support.

-EMwhite

Featured Photo - The A2560K

The ‘business end’ of the A2560K, Serial #003. This pre-production
unit was hand-assembled with love in British Columbia, Canada.

To be accurate, the ‘K’ is all ‘business’; every angle, profile, texture,
feature, and the design decisions behind them were optimally
engineered to attract and inspire expert engineers and new users.

Resources, publisher’s notice, and this issue’s distraction: a Puzzle 2

Interview: Peter Weingartner, Foenix Kernel developer 3 - 5

It’s here… The Machine that Builds Machines; the Charmhigh
Tech CHMT48VA Pick & Place machine has finally arrived

6

“Jr.” on the drawing board: Following the June 18th focus group,
details of what might be next for the next Foenix platform

7

Beginner’s corner: “Up, up, and away” - Pg. 71-72 of the C64
User’s Guide, revisited

8 - 12

A2560K Photo feature removed for printing - see ‘full’ version -

Back page - Vintage Advert Time Machine - 1541 Flash! 16

Issue #1 July 2022

http://archive.org
http://csbruce.com/cbm/transactor/

Theme: Tech Pioneers and Visionaries

Across Down

1 Mario’s Nintendo father,
credited for saving gaming

2 www HoF member and
NCSA wunderkind

4 Chuck E. Cheese founder
and pong daddy

3 Macintosh GUI King and
Hypercard inventor

5 First name shared with
Peanuts Lucy’s brother

5 “Jack Attack”, known to
market to the masses

7 _ _ _ _ _ 2049’er and
Lorraine founder

6 Knighted Clive partnered
with a US watch company
to introduce a doorstop

9 Lady Ada’s (not Limor
Fried) surname

8 D-list’ partner and Sharks
‘super-fan’

10 Lang gifter and National
Medal of Technology
recipient* from Bell Labs

12 Responsible for making
‘Ed’ visible. Co-founded a
Unix workstation giant

11 Cubist inventor of W3
(suppress the hyphen, if
there is one :)

13 Root domain admin, SMTP
RFC editor, and ‘g-d of the
internet’

Test your knowledge (and researching skills) of historic
innovators by last name - Googlingtm permitted

git and URL Resource Directory

Updated each issue, this space will contain links to
public facing Foenix related development efforts (useful

to see how others have solved particular problems, to
find docs or to see what is out there)

Foenix Rising is a user-supported, not-for-profit
bimonthly hobbyist’s newsletter published in Murray
Hill, New Jersey, USA supporting Foenix Retro Systems
products with a focus on software development and
related retro technologies.

Subscribers: 966

Published by EMwhite (discord and elsewhere)
Motto: ‘Beware of programmers with screwdrivers’

Correspondance:

Env https://github.com/WartyMN/A2560-FoenixRetroOS

Lang https://github.com/daschewie/FoenixBasic68k

Kernel https://github.com/pweingar/FoenixMCP

Compiler https://github.com/hth313/Calypsi-m68k-Foenix

Env https://github.com/Trinity-11/FoenixIDE

Game https://github.com/dtremblay/fraggy

Code https://github.com/clandrew/experiments

Game https://github.com/hth313/defender-Foenix

Compiler https://github.com/hth313/Calypsi-65816-Foenix

Samp code https://github.com/noyen1973/C256-Foenix

Utility https://github.com/econtrerasd/Foenix-Sprite-Editor

Game https://github.com/dtremblay/c256-tetris

Utility https://github.com/dtremblay/c256-vgm-player

Stefany Allaire
Patreon Page

Foenix Retro Systems
Home Page

Foenix
Discord Invite

Links to other Foenix Resources:

VCF East 2022 Foenix
Exhibit Retro

207/2022

*presented to ‘this’ person and an esteemed colleague by U.S. President William
 Jefferson Clinton in 1999

https://discord.gg/gzEQSKagN5
http://c256foenix.com
https://github.com/WartyMN/A2560-FoenixRetroOS
https://github.com/daschewie/FoenixBasic68k
https://github.com/pweingar/FoenixMCP
https://github.com/hth313/Calypsi-m68k-Foenix
https://github.com/Trinity-11/FoenixIDE
https://github.com/dtremblay/fraggy
https://github.com/clandrew/experiments
https://github.com/hth313/defender-Foenix
https://github.com/hth313/Calypsi-65816-Foenix
https://github.com/noyen1973/C256-Foenix
https://github.com/econtrerasd/Foenix-Sprite-Editor
https://github.com/dtremblay/c256-tetris
https://github.com/dtremblay/c256-vgm-player
https://www.patreon.com/bePatron?u=56480700&redirect_uri=https://c256foenix.com/?v=b174a31115af&utm_medium=widget
http://vcf.emwhite.org

Fresh from committing version 1.0 of the A2560K MCP
Kernel, Peter was kind enough to sit down and play 20
questions.

This turned into a 2 hour discussion across which we
talked about Foenix platforms & Software Engineering;
but also, Education, Astronomy, Peter’s proudest
accomplishment to date, and what’s next for him.

For those unaware, MCP* (or Master Control Program)
is a combination BIOS, Kernel, and command line
interface, written from the ground up, primarily in ‘C’
for the A2560K. MCP will eventually be ported to the
A2560U platform, the A2560X platform, and beyond.
More on this later.

EMW: Thank you for making yourself available. Now that
1.0 is in the books, how are you spending your spare time?

PJW: I’ve starting to work on some of my tutorial videos
again. I've just completed the audio for one on interrupts.

EMW: I’m actually a customer of your videos and am
looking forward to that. Let's talk about your background.
What was the first computer you used or had access to, and
what was the first computer you owned?

PJW: First used was an Ohio Scientific 6502 based
computer with no graphics outside of the character set. It
was black & white. This was in Middle School.

The first computer I owned, and I still have it, is a
Commodore VIC 20. It took years to save up enough
Christmas money to buy it.

EMW: How long did it take you to buy the 1540 or 1541
floppy drive?

PJW: I guess 40 years because I still don’t have one. I was
too poor and relied on the Commodore Datasette primarily.
Well wait, that isn’t true, a neighbor gave me a
Commodore SX-64 which I still have so I guess
technically, that was my first disk drive.

EMW: Our backgrounds sound similar, the first computer I
used was a Commodore PET, also in middle school. Did
this early start lead to Computer Science in College?

PJW: I started as a Physics major but around Junior year of
College, I looked to take an Operating Systems class, just
out of interest. There was a math pre-req and I approached
an advisor to try an obtain a waiver where I was told that
with the addition of just another class or two, I could
graduate with a double major; Physics and Computer
Science. So that's what I did, entirely by accident.

EMW: That’s a first (!!), typically it’s the opposite; I’ve
heard of College Advisors unintentionally misleading
students to the point where they miss graduation after
being unaware of a late requirement. In your case, it
sounds like it worked out.

EMW: What led you to Foenix and what were you doing
prior?

PJW: For years I’ve wanted to make my own single board
computer [walks to closet, returns proudly with a wire-
wrapped protoboard]. 4-5 years ago I began. I got the
terminal working, got EH Basic working, and started
looking around for graphics chips and found nothing.

Sure, there were old VIC chips out there, but I wanted
something that could do VGA or DVI-I and didn’t want to
do the heavy lifting myself from scratch.

EMW: [interjects] This was prior to Ben Eater’s “Worst
Video Card” series?

PJW: Yes. But I was watching the 8-Bit Guy [David
Murray] and he was talking about his dream computer
project and I thought that perhaps I should start working in
that direction.

David was talking about Stefany and her project in the
early days. At that point I started following Stefany and
she posted something mentioning that she had a hardware
design in the works but needed some help writing the
software. So I approached her.

Interview with Peter Weingartner
Kernel Architect and Developer of MCP, the FMX / C256 and A2560 Kernels, and BASIC816

* Though we did not talk about it, MCP is a Tron (movie) reference. See footnote ‘1’ on pg. 2 of the MCP
documentation for another.

307/2022

https://github.com/pweingar/FoenixMCP/blob/main/docs/FoenixMCP%20Manual.pdf
https://github.com/pweingar/FoenixMCP/blob/main/docs/FoenixMCP%20Manual.pdf
https://github.com/jefftranter/6502/tree/master/asm/ehbasic
https://www.youtube.com/watch?v=l7rce6IQDWs
https://www.youtube.com/watch?v=l7rce6IQDWs

PJW: The earliest version of the Kernel was originally
designed by somebody else along the lines of the
Commodore 64 Kernel (even to the extent that it had
common entry points such as SETNAM), but he didn't get
very far with it.

I began playing around with the IDE and then started
working on the Kernel and a BASIC interpreter.

EMW: So this was for the original FMX, I assume. How
long have you been working on MCP for the 68K
processors or for the ‘K’ specifically?

PJW: Just about a year; the first commit was on August
27th, 2021 but I started the code between June and July.

EMW: How much of the MCP is Assembly language?

PJW: Not much. There is a platform specific startup file
that gets called upon reset and there are stubs for the
interrupt handlers that call into the ‘C’ code and a few
other little things; it’s really localized.

EMW: Which complier was used for MCP?

PJW: I used the VBCC complier. I tried GCC but couldn’t
get the linker working the way I wanted. I’ll probably
move to Calypsi with the next major release.

EMW: I’ve never seen or used the A2560U, but there was
certainly a lot of excitement about Stefany breaking into
the Motorola processor family. What Kernel did the
A2560U use?

PJW: It was an early version of Foenix MCP. My hope was
I could keep the code in sync between the two platforms
but not having a physical A2560U, I quickly realized that
without hardware, it would be impossible to continue
development on the main MCP platform for the ‘K’ while
confirming full compatibility with the ‘U’, so Vince has
taken up working on the back-port of MCP to the A2560U.

EMW: Considering your experience with the FMX line (and
by proxy, the C256U) and your work on MCP, what is your
favorite Foenix machine either released, in production, or
on the drawing board?

PJW: At the moment, it’s the ‘K’. It’s about the case and
the physicality of it more than the internals or electronics.

It’s nice having a 68040 in there but one of the things that
I’m realizing now that I’ve released MCP is that the 68K
is kind of boring because the instruction set is so
orthogonal and clean. Whereas the 65816 is kind of
quirky and you have to really think about assembly
language; it’s frustrating when it goes wrong.

EMW: [interjects] So the 65816 is enjoyable when you’ve
overcome some of the complexity or limitations?

PJW: Correct, Stefany has done a really good job with the
‘K’. She teased me for such a long time “one of these
days, I’m going to make a 68000 based, all-in-one
keyboard computer” and I was like yeah yeah yeah, one of
these days, you’ll get to that!

EMW: And here we are, she’s done it. Come to think about
it, it’s been just 3-4 months between her proudly holding
up the prototype during the announcement at VCF East in
October, and shipping the hand-assembled unit you show
in your video, then another 4-5 months to where we are
today, pick-n-place built units, just about ready to ship.

If you had 3 more months and more importantly, 3 more
months worth of energy, what would you add or change
about MCP?

PJW: I might not do anything more with it. Stefany
wanted a code base that is a very simple stock kernel. We
didn’t want any memory managers or screen managers, or
multi-taking, so that’s not on the to-do list.

EMW: Yes, I recall reading in your MCP doc, goals and
anti-goals state this clearly.

PJW: I had some thoughts of fancier ways of organizing
user code, similar to the resource fork of the Macintosh.
At present, we are not supporting partitions on the hard
drive, so that could be added.

I feel like it’s pretty close to what it should be. If I were
writing an OS for myself, it would be a different matter.
But we were trying to present a particular environment.

EMW: Taking everything into account, your academic
background, 17 years at Intel, and your work with Foenix
or something else that we haven’t discussed, what would
you say is your proudest accomplishment?

PJW: The first thing that comes to mind is something that I
did 30 years ago. When I was a graduate student I got
really interested in the PostScript language. Upon
learning it, I realized there were not many resources, so I
sat down and wrote a guide to the language with examples
and an explanation on how the different operators worked
and I posted it out on the web; this was around 1993 or

Peter shared the source statistics which represent the
committed v1.0 code:

C code: 44,849 lines
Assembly: 418 (including a single startup file)
The assembled Object file = 241,196 bytes

Calculated, this is just less than 1% asm

407/2022

https://github.com/pweingar/FoenixMCP/blob/main/docs/FoenixMCP%20Manual.pdf

1994. I think we were still dealing with Mosaic 1.0 at that
time; these were early days.

I just put it out there and it really took off. People really
read it, I received requests for permission to translate it and
somebody was interested in putting it onto a CD-ROM of
PostScript utilities. Even as recently as 4-5 years ago, I
would receive email with questions and ‘thanks’.

EMW: If you could write a programming language for
Foenix or port an existing language, what would it be?

PJW: Two things that I was thinking about; one is FORTH;
it’s both very fast and very powerful but I’m not sure how
many people would use it. The other thing I’m thinking
about is LOGO which is kind of a LISP dialect as it lets
you define words and has good list processing; the Turtle
graphics which would be kind of fun as I would leverage
VICKY II and support Sprites, etc.

EMW: Would you choose to do a clean-room version of
LOGO or would you port existing code?

PJW: I thought about one of the University of California
Open Source versions but looked into it and it appears to
be more POSIX based so I might consider a clean-room
implementation.

EMW: I’d use that. I learned LOGO and PILOT as a kid,
it’s addictive and may even draw more people to the
platform.

Ok… time for the lightning round. What is your favorite
food?

PJW: Thai food. Specifically, Green Curry Tofu.

EMW: What was your favorite job, either in IT or
something unrelated. I'll tell you mine: I drove a Produce
Truck one summer and loved it. Also, I got into about
seven accidents that year between the Produce Company
and a stint at Domino’s Pizza, delivering. This was before
they discontinued the “30 minute guarantee”!

PJW: In grad school, I was a TA (Teacher’s Assistant). I
also worked in the Computer Lab at that time. I really
enjoyed working with the students and helping them solve
problems.

EMW: Do you know any written or spoken language other
than English?

PJW: Well, I can say “Where is the tea” in several languages
but that’s about it. I did study Latin for 5 or 6 years,
however.

EMW: What is your least favorite Programming Language;
perhaps one that you wish you could unlearn?

PJW: [laughs] BASIC! It’s such a primitive language. I
used it as a kid. I suppose it’s good for small things. When
I was n High School while getting ready for the AP exams,
I read some of Metamagical Themas by Douglas Hofstadter
and was really taken by how elegant LISP was. I
subsequently tried to write a LISP interpreter using Apple
Pascal. That didn’t work out so well!

EMW: Is there a person you most admire?

PJW: This isn’t a person that I admire the most in totality,
but in terms of technology, I'll say Steve Wozniak. He is
one of the most interesting people and his Apple was the
one I most liked. His version was the “pull the case open,
here are slots for expansion, and here are the schematics”,
whereas Jobs version of Apple was "we need to put screw
heads on here that nobody has a screwdriver for”.

EMW: I couldn't characterize it any better than that! Thank
you for the chat, this has been fun.

For those interested in Peter’s PostScript doc, have a
look here (fifth edition, February 2006 update).

Editorial note: I purchased a PostScript book in the
early 90’s and have messed around with Ghostscript
over the years. By any measure, Peter’s doc is an
impressive piece of work. Worth a browse whether or
not you know what PostScript is.

Here are a few pics of the wire-wrapped SBC that Peter
spent time on prior to diving into everything Foenix:

Peter’s last response said it all. From his earliest work in
College through his most recent git commit and onto his
“Tail Recursive” YouTube videos, Peter is all about open
platforms and ‘community’ and we thank him for all that
he has done and continues to do for Foenix and its users.

507/2022

https://www.youtube.com/user/pweingar/videos
https://docerp.ro/download/fgps.pdf

 - On the Drawing Board
Proof-of-concept details of an exciting new development board released

With several mid to high-end platforms in varying stages of
build and early customer ship, Foenix Retro did something
unexpected last month; it released details of yet another new
system. This time, it’s a full featured, but low-cost platform
that looks to capture a segment of the retro market that
we’ve not seen addressed.

The physical specs of the C256 Jr. board include an IEC
(Commodore Serial)
port, familiar Foenix
staples (a VICKY
derivation coined
“TINY", sockets for
stereo SID ICs, DVI-I
video output, a real-time
clock and other features)
and a genuine WDC
65C02S with what looks
to be a banked memory
scheme many times the
size of what you would
expect from an 8-bit
system.

So it looks like some of
what we’ve seen before
but in a lower cost and
interesting package. But
look closer, and you’ll
see that the platform has
some new-to-Foenix
features as well, namely, a Serial to WIFI SLIP interface
intended to get the platform on a local private net with a
minimum of hassle.

The left side of the board contains another nod to the early
MOS lineage, a DIP packaged 65C22 VIA which
brings the familiar Commodore 20 pin keyboard
header and joystick interface to add to a set of PS/2
keyboard and mouse ports that Foenix systems have
been using since the original FMX.

The image released above represents the development
board of which a small quantity are being produced.
These are being put into the hands of developers and
supporters that will test the new hardware and work in
parallel to produce kernel and operating environments. Two
kernels are expected to be available for the Jr. The first is a
clean-room re-implementation of the CBM “KERNAL",
suitable for running a user-provided CBM BASIC ROM
image with a Commodore disk drive. The second is a multi-
tasking kernel (ported from the 65816 machines) with
networking, SD Card support, and a high performance byte-
code compiled BASIC.

While preliminary, Stefany Allaire has hinted that the prod
release of this SBC is expected to be less than $199 USD
(BYO case and power). Final specifications and the bill-of-
materials will be refined across the next few months.

It is expected that a fair number of C256 games and
applications will be ported, and the possibility exists that
the prod release of this board will host ‘other’ platforms.

Something else unexpected: for the first time, a Foenix
platform built to the Mini-ITX form factor with support for
24-pin ATX power; this will be familiar to PC and kit
builders and opens the door to a world of options and
customization, not the least of which could be a paring with

cases such as the My Retro Computer Mini-ITX case
(see Kickstarter campaign from earlier this month).

Since we are still in the 2020s, supply-chain uncertainty
for some components may complicate matters;
thankfully, with a fair number of discreet ICs on the
board, FPGA logic cell requirements are more modest
than demanding, and our understanding is that the dev

board will run comfortably with well less than 16,000
cells. More will be known as the final specs and BOMs
come together.

So move over diaper-boy DK and
Charlie Chaplin ‘on-a-budget’, there is
soon to be a new ‘Jr.’ on the scene.

607/2022

https://en.wikipedia.org/wiki/MOS_Technology_6522
https://www.kickstarter.com/projects/myretrocomputer/the-commodore-64-its-back-and-better-than-ever

The Machine that Builds Machines
Foenix Retro adds powerful pick & place capabilities with the Charmhigh Tech CHMT48VA

If you’ve been following along at home, you’ll know that
Foenix Retro recently added a new tool to the arsenal; a
Charmhigh Tech pick & place (P&P) machine. This article
takes a quick look at the technology and what it means for
Foenix Retro.

The CHMT48VA (or ‘48VA’, because we are into the
whole brevity thing), places components onto PCBs at a
rapid rate and with high precision, accurate to within
25/1,000

ths of a mm. Parts are fetched with the aid of a
vacuum nozzle from a
bank of 27 reels
mounted on the left
side of the machine.

An embedded Linux
system drives the
robotics according to
instructions output
from the same Altium
Designer software that
produces the PCB
layout and the solder mask stencil. Despite what we know
about CNC, robotics, and the capabilities of 3D printing,
this application of related tech still seems futuristic.
Seeing it in action is impressive.

Surface Mount Technology (SMT) came into prominence
in the mid-to-late 80’s and is simultaneously thanked and
cursed for efficiency, innovation, cost reduction, eye strain,
and back pain.

Those of us with through-hole soldering skills usually cry
uncle when asked to hand solder even a handful of SMT
passives to a PCB.

Go ahead and try
placing 1,000
components on a
PCB and I’ll
introduce you to
my optometrist;
how about 10,000
components across
a 10 hour
production day?

To illustrate just how challenging this is, try to simply
count the capacitors and resistors in the picture above.
This is a pic of the back-side of a C256U+ board beneath
the Cyclone IV FPGA footprint. All of these caps and
resistors were placed by-hand with tweezers, by Stefany.
Had a P&P been available, this task would have take under
2 minutes.

In 1988, Steve Job’s NeXT Computer company produced a
video entitled “The Machine to Build the Machines”, a

Hollywood style production that introduced P&P and SMT
to the general public. The 6 1/2 minute video was shown at
the NeXT unveiling event in San Francisco, California.

The machine in the NeXT video is quoted as being able to
place 150 components per minute which is about 3x the
speed of the Charmhigh; but of course, the 48VA is likely
100x less expensive, and therefore, accessible to serious
makers and small scale production outfits.

Stefany’s 48VA is busy building Foenix A2560K machines
and is able to place about 80% of the mainboard parts in
about 20 minutes, directly from 8mm reels. This includes
“0402” (0.040" x 0.020”) and “0603” (0.060" x 0.030”)
components, used heavily on Foenix platforms.

Components of this type
include resistors,
capacitors, diodes, and
SOT23 transistors. The
48VA comes equipped
with two nozzles and can
be adapted to place larger
tray based components.

The following video,
hosted on Amazon from a
Charmhigh seller, shows

the slightly bigger brother (the ‘48VB’) placing parts, some
of which are being fed by a human from rectangular trays
towards the front of the machine. Keep a sharp eye on the
front leftmost IC around 00:37 seconds in. (be careful not
to blink)

Notice that upon ‘picking’, the arm swings over to an
upward facing CCD camera. This crucial step confirms
orientation and measures skew to within within a fraction
of a millimeter and will compensate to more accurately
place components to the pre-programmed locations.

One unavoidable physical challenge shared with 3D
printers is oscillation caused by stepper motors, servos and
acceleration / deceleration of the head. P&P machines add
the additional challenge of noise and vibration caused by
the vacuum pump. To counter this, Foenix Retro’s P&P
machine happens to sit on a concrete block foundation.

With a busy summer ahead, the 48VA will join forces with
the Voronator 3D printer, solder reflow ovens, and all of the
manual toil required to design, build, and test the rest of the
works; this includes hand soldering and assembling
connectors, headers, audio components, cases, diskette &
hard drives, SD card sockets, and hundreds of other
components. As those watching closely have come to
appreciate, it's not just having access to machines and parts
that produce an excellent product, it’s knowing how to best
use them. More goes into Foenix Retro products than
meets the eye.

707/2022

For scale: Stock photo of a
‘0603’ 300nF capacitor

https://www.youtube.com/watch?v=dSj6kvv7_Sg
https://www.youtube.com/watch?v=92NNyd3m79I
https://www.amazon.com/vdp/0a509bce89694190aef01f199af68529?ref=dp_vse_ibvc0

Beginner’s Corner: “Up, up, and away”
Pg. 71 of the C64 User’s Guide, revisited

Sprites, then and now

If retro = nostalgia, you’ll be hard pressed to find something as nostalgic as the famous ‘Commodore Balloon Sprite’ demo,
which was (for many) a first taste of the power of Sprite Graphics, and one of many features that put the C64 on the map.

Yes, Atari had Player/Missile graphics and of course, Apple (part of the 77’ Trinity) was first to feature a color [but non-
linear / difficult to manipulate] bit mapped display; but Commodore took a fair amount of heavy lifting off the shoulders of
would-be developers (and the 6510 processor) by creating a custom ASIC to deal with the headaches of managing and
manipulating layers of movable objects, controllable via a relatively easy to understand register scheme.

Page 71 of the C64 User’s Guide included a short BASIC program that out of the box, provided near instant gratification with
just 5 minutes of typing. The curious among us modified the code to change the color, speed, size, direction, and in some
cases, the actual image from the data statement defined hot air balloon you see on this page.

Upon typing RUN and pressing <RETURN>, something wonderful happened, and I’m not referring to the balloon. It was a
wondrous new sensation followed by a realization: “I did that !! I can program a computer !!”.

1	 REM UP, UP, AND AWAY
5	 PRINT “{CLR/HOME}”
10	 V = 53248 : REM START OF DISPLAY CHIP
11	 V + 21,4 : REM ENABLE SPRITE 2
12	 POKE 2042,13 : REM SPRITE 2 DATA FROM BLOCK 13
20	 FOR N = 0 TO 62 : READ Q : POKE 832 + N, Q : NEXT
30	 FOR X = 0 TO 200
40	 POKE V + 4, X : REM UPDATE X COORDINATES
50	 POKE V + 5, X : REM UPDATE Y COORDINATES
60	 NEXT X
70	 GOTO 30
200	 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210	 DATA 7,217,240,7,223,240,7,217,240,3,231,224
220	 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230	 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
240	 DATA 0,62,0,0,62,0,0,62,0,0,28,0

The Commodore 64 example was made possible thanks to the C64’s VIC-II chip which supported 24 by 21 pixel single-color
Sprites. Each Sprite required 63 bytes (or 504 bits) of memory. ‘Multi-color’ Sprites reduced the horizontal resolution to 12
(double-wide) pixels and the same 21 vertical pixel resolution, however only two additional colors could be chosen and were
shared across all 8 Sprites. Things are different now.

* the other thing I ‘love’ about the code above is the line numbering: 1, 5, 10, 11, 12 … COME ON, COMMODORE !!!

Gotta love* the vintage color palette !!

(320 x 200 resolution - for ref/scale, each

character is 8 x 8 pixels)

07/2022 8

Introduction to this column: In this first issue of Beginner’s Corner, we will be leveraging BASIC816, simply
because it’s accessible to ~70% of the Foenix platforms that are in user’s hands today. Next month, we will
transition briefly to 65816 assembly, in order to tie some of the concepts covered (and a few others) to the
good work that PJW has invested in his 65816 videos.

Longer term, we will land on something platform independent; may be the C Language or possibly a new
multi-platform version of BASIC. With multiple efforts in the works, we expect to know more by the end of
the Northern Hemisphere summer.

Personally, I’m a big believer in high-level (especially interpreted) languages for educational purposes because
they promote experimentation and learning without requiring complicated tool chain knowledge, mastery of
a language, or fear of losing work when things go ‘black’. BASIC was, is, and until further notice, will
continue to be, a reasonable tool for beginners.

07/2022

Foenix Systems support full color Sprites which are 32 pixels by 32 pixels and may use one of several 256-color, user definable
palettes. From a BASIC816 perspective, each palette color is derived from a 24 bit RGB value, thus requiring 3 bytes per color
* 256 colors or 768 bytes per shared palette.

Looked at through a ‘binary pixel’ lens, the bitmap portion of the Foenix scheme
requires 1024 bits (about twice that of the C64 due to it being 8 bits wider and 11
bits taller); but instead of storing only one bit (‘on’ or ‘off’) per pixel, VICKY II
requires a byte per pixel and the value of the byte identifies a color number within
the selected palette. In total, each Sprite will require 1024 bytes. Color palettes,
which are shared with bitmaps and tiles, are stored separately.

The following BASIC816 program, based on Peter Weingartner’s GitHub hosted
example, will perform the Sprite setup required for a ‘dull-yellow-squaretm’ on the
Foenix platform. Compare some of these commands to the methods used in the
Commodore example above.

10 	 CLS : GRAPHICS &h27	 	 	 	 	 : REM Sprites with text overlay
12 	 SETCOLOR 0, 1, 128, 128, 0	 	 	 	 : REM A dull yellow
16 	 FOR x% = 0 TO 1024 : POKE &hB00000 + x%, 1 : NEXT	 : REM Define sprite image (just a yellow square)
18 	 SPRITE 0, 1, &hB00000	 	 	 	 	 : REM Set up sprite #0
20 	 SPRITESHOW 0, 1	 	 	 	 	 : REM Make sprite 0 visible
22 	 SPRITEAT 0, 100, 100	 	 	 	 	 : REM Position sprite 0 to 100, 100

Related topics and resources

Whether modern Foenix or ancient Commodore, there are 4 or 5 steps required to instantiate a Sprite (and potentially others) in
order to get them to provide value in the context of a game. These topics might include:

• Non-linear movement
• Animation
• Collision detection (with other Sprites or Background text, Tiles, or Graphics)
• Binding animation or movement to an interrupt and controlling smooth movement via a time-slicing engine

The next issue of Foenix Rising will discuss at least one other use of Sprites; as an effective tool for non-movable objects and
across the next few issues, we will delve into related topics.

For a more detailed video review of Foenix Graphics (in general) and BASIC816 commands, click here; and for an overview
of Sprites in the context of 65816 Assembly language, you can find a nice video tutorial and others here. Both were produced
by Peter Weingartner, the developer behind BASIC816 and the Kernels of various Foenix machines.

Note: at least one of these videos was produced 2+ years ago (at the time of this writing) and VICKY II capabilities may have
changed depending on when you are reading this.

Tooling for creating Sprites

Prior to the availability of Sprite editors, the tool of choice was graph paper and
binary encoding. In fact, Commodore, in their C64 User's Guide manual, included
a grid depicting and instructing just that, in connection with the Sprite on page 8.

Thankfully, several generations of image editors have brought pixel-art to multiple
platforms, and Foenix is no exception.

Ernesto Contreras released Foenix Sprite Editor in 2021 for BASIC816 (FMX and
C256U) platforms. We will be doing a deep dive into this app in the next issue,
but don’t wait for it; get your hands on it now because: a) it takes the toil out of
editing Sprites; and b) it's colorful and fun to use. (Look for it on the Foenix
Marketplace towards late July 2022.)

640 x 480 resolution - not to scale
with the C64 example above

Foenix Sprite Editor by Ernesto Contreras

(used to create the Foenix Balloon)

9

https://www.youtube.com/watch?v=xqCOvJZMG34
https://www.youtube.com/watch?v=24P_U-k-aLA
https://github.com/econtrerasd/Foenix-Sprite-Editor

5 simple steps

Let’s move along to five steps to instantiate a non-cheese-like Sprite and then we will briefly discuss horizontal, vertical, and
diagonal movement. Basic steps include:

1. Selecting graphics mode -> 2. Setup Sprite color(s) -> 3. Bind bitmap and LUT data to the Sprite -> 4. Identify coordinates -> 5. Make it visible

The prerequisite to the multi-color Foenix Balloon is loading the binary image file “FBALLOON.SPR” and establishing a
color lookup table (embedded within data statements on the next page) into memory. We will cover the basics here and get
into more complex subject matter on the next page.

Step 1: Select the graphics mode: GRAPHICS

• Select a GRAPHICS mode conducive to Sprite and Text; the BASIC816 command GRAPHICS &h27 will select a
combination of Sprite (bit 5) + Graphics (bit 2) + Text Overlay (bit 1) + and Text (bit 0) or 39 decimal aka 27 hex.
See line #10 on pg. 11 or line #10 on pg. 9 to see this code in context.

Step 2: Define a palette aka look-up-table or ‘LUT’, if not already established: SETCOLOR

• SETCOLOR <lut>, <color #>, <red>, <green>, <blue> for each color used; you do not need to define all 255
colors, but you should define the colors required for your Sprite. Binding a Sprite to a LUT is accomplished in step 3.
See line #20 and the called subroutine on pg. 11 for the full color palette example, or line #12 on pg. 9 above to see a
simple example of how to use. It’s subtle, but the use above defines but a single color (color #1) on LUT 0 using
RGB value 128, 128, 0 (putrid). Sometimes, one or two colors is all you need.

Step 3: Bind the Sprite to a color palette/look up table and optionally, identify the VRAM where the Sprite bitmap data is stored

• SPRITE <sprite #>, <lut> [, <address>] if the optional address is not identified, the Sprite will default to
B00000. See lines #30-50 on pg. 11 where we load our Sprite into memory from disk, use the memcopy command
(more on this next issue) to move it into video memory at location B00000, and then explicitly bind Sprite #0, using
LUT #0 and notation &hB00000 with the SPRITE command.

Step 4: Position the Sprite with SPRITEAT (aka provide the x and y coordinates):

• SPRITEAT <sprite #>, <x>, <y> Sprite # from 0 .. 63, and coordinates from 0, 0 to a valid value which takes screen
resolution into consideration. As you will see in the examples below, x = 0 and y = 0 is ‘offscreen’ (under the border).

Step 5: Enable or turn on the Sprite:

• SPRITESHOW <sprite #>, <visible> [, <layer>] where visible may be set to 0 (hide) or 1 (visible);
optionally, a layer number may be provided. In the simple example on pg. 9, Sprite 0 is positioned at 100, 100 (near
the upper left corner). Below, we will move the Sprite using a few different methods.

07/2022 10

My first Foenix Sprite: my first experience (and my first modest success) with the Foenix platform
came shortly after powering up my C256U+ in October. Equipped with the built in ML monitor and a
VICKY address register map (and no Sprite editor !!), I posted the pic that you see to the left.

The white arrow points to my very first Sprite; random bits tied to random colors (before I knew how
Foenix platforms leveraged such features) but I could move it by typing hex values into registers. It
resembled a piece of moldy cheese (aged, relative to Peter’s yellow square).

The second Sprite I created was the Foenix Balloon above. I made the original version of this at
2am following day-one of VCF East. Even if you do not consider yourself a graphics artist, Google
“pixel art Pacman” or for a Space Invaders alien and have at it.

10020 FOR c%=0 TO 255 : REM load palette
10030 READ r%,g%,b%
10040 SETCOLOR 0,c%,r%,g%,b%
10050 NEXT : RETURN

20000 DATA 0,0,0,0,0,0,34,35,35,67,69,73,98,104,113,130,139,152
20010 DATA 166,174,186,200,200,200,98,93,84,133,117,101
20020 DATA 158,140,121,174,161,137,187,175,164,204,195,177,234,219,201
20030 DATA 255,243,214,088,49,38,115,61,59,136,80,65,154,98,76
20040 DATA 173,110,81,213,141,107,251,170,132,255,206,127,00,39,53
20050 DATA 0,56,80,0,77,94,11,102,127,0,111,137,50,140,167
20060 DATA 36,174,214,136,214,255,102,43,41,148,54,58,182,77,70
20070 DATA 205,94,70,227,120,64,249,155,78,255,188,78,255,233,73
20080 DATA 40,43,74,58,69,104,97,95,132,122,119,153,134,144,178
20090 DATA 150,178,217,199,214,255,198,236,255,000,34,25,0,50,33
20100 DATA 23,74,27,34,89,24,47,105,12,81,136,34,125,164,45
20110 DATA 166,204,52,024,31,47,35,50,77,37,70,107,54,107,138
20120 DATA 049,142,184,65,178,227,82,210,255,116,245,253,26,51,44
20130 DATA 47,63,56,56,81,64,50,92,64,65,116,85,73,137,96
20140 DATA 85,182,125,145,218,161,94,7,17,130,33,29,182,60,53
20150 DATA 228,92,95,255,118,118,255,155,168,255,187,199,255,219,255
20160 DATA 45,49,54,72,71,77,91,92,105,115,115,127,132,135,149
20170 DATA 171,174,190,186,199,219,235,240,246,59,48,60,90,60,69
20180 DATA 138,82,88,174,107,96,199,130,108,216,159,117,236,197,129
20190 DATA 255,250,171,49,34,42,74,53,60,94,70,70,114,90,81
20200 DATA 126,108,84,158,138,110,192,165,136,221,191,154,46,16,38
20210 DATA 73,40,61,102,54,89,151,84,117,185,109,145,193,120,170
20220 DATA 219,153,191,248,198,218,0,46,73,0,64,81,0,81,98
20230 DATA 0,107,109,0,130,121,0,160,135,0,191,163,0,222,218
20240 DATA 69,49,37,97,74,60,126,97,68,153,121,81,178,144,98
20250 DATA 204,169,110,232,203,130,251,234,163,95,9,38,110,36,52
20260 DATA 144,70,71,167,96,87,189,125,100,206,151,112,237,182,124
20270 DATA 237,212,147,50,53,88,74,82,128,100,101,157,120,119,193
20280 DATA 142,140,226,156,155,239,184,174,255,220,212,255,67,23,41
20290 DATA 113,43,59,159,59,82,217,74,105,248,93,128,255,125,175
20300 DATA 255,166,197,255,205,255,73,37,28,99,52,50,124,75,71
20310 DATA 152,89,90,172,111,110,193,126,122,210,141,122,229,154,124
20320 DATA 032,41,0,047,79,8,73,93,0,97,115,8,124,131,30
20330 DATA 150,154,38,180,170,51,208,204,50,98,42,0,117,59,9
20340 DATA 133,79,18,158,101,32,186,136,46,209,170,57,232,210,75
20350 DATA 255,246,79,38,35,61,59,56,85,86,80,111,117,104,110
20360 DATA 145,122,123,179,151,131,207,175,142,254,223,177,29,44,67
20370 DATA 46,61,71,57,77,60,76,95,51,88,113,44,107,132,45
20380 DATA 120,158,36,127,189,57,55,36,35,83,57,58,120,76,73
20390 DATA 148,93,79,169,109,88,191,126,99,215,147,116,244,163,128
20400 DATA 45,75,71,71,101,90,91,123,105,113,149,125,135,174,142
20410 DATA 138,193,150,169,209,193,224,250,235,0,27,64,3,49,95
20420 DATA 7,72,124,16,93,162,20,118,192,64,151,234,85,177,241
20430 DATA 109,204,255,85,71,105,118,93,115,151,116,136,185,140,147
20440 DATA 213,163,154,235,189,157,255,213,155,253,247,134,29,29,33
20450 DATA 60,49,81,88,74,127,121,100,186,149,133,241,169,150,236
20460 DATA 186,171,247,209,189,254,38,36,80,40,51,93,45,61,114
20470 DATA 61,80,131,81,101,174,82,116,197,108,130,196,131,147,195
20480 DATA 73,33,41,94,65,74,119,83,91,145,96,106,173,121,132
20490 DATA 181,139,148,212,174,170,255,226,207,114,28,3,156,51,39
20500 DATA 191,90,62,233,134,39,255,177,8,255,207,5,255,240,43
20510 DATA 255,255,255

Color Palette Setup & Sprite Positioning / Movement

The following BASIC816 code, borrowed from Ernesto’s Foenix Sprite Editor, incorporates color data from the following
resource: https://lospec.com/palette-list/duel. Ernesto carefully converted the color codes into data statements, modifying
certain colors slightly, and added a four line BASIC loader.

RGB values are encoded into BASIC DATA statements from line 20000-20510 and a simple subroutine on lines
10020-10050 loads LUT 0 with data using the BASIC816 SETCOLOR command on line 10040.

One aspect of the VICKY II LUT that may not be obvious, is the first color in each table is reserved for transparent (aka,
clear). As such, the first 3 values of data on line 20000 (”0, 0, 0”) are ignored. The second color in this case happens to
also be (”0, 0, 0”), but is black; the last color, represented by the final 3 values in the table on line 20510 (”255, 255,
255”) is white. We could have just as easily had color 1 = white, color 2 = black and color 3 = red and not bothered with the
rest, but our Sprite uses several colors and it's nice to just leverage the palette in the Sprite Editor.

In our next Beginner’s Corner, we will be discussing palette cycling and dynamic color reassignment (two methods for
animating that do not require additional Sprite definitions).

The following example represents the baseline setup,
required for each of the examples below (note that line 20
calls the Color Palette setup sub-routine to the left).

10 	 CLS : GRAPHICS &h27
20 	 GOSUB 10020
30	 BLOAD “FBALLOON.SPR”,&h100000
40	 MEMCOPY LINEAR &h100001,1024 TO
 LINEAR &hB00000,1024
50	 SPRITE 0, 0, &hB00000 : SPRITESHOW 0, 1
60	 SPRITEAT 0, 100, 100 : END

The following example demonstrates x-axis movement (an
endless loop that increments the x% variable from location 0
to location 200, leaving the y-axis static @ 100).

60	 FOR X% = 0 TO 200 : SPRITEAT 0, X%, 100 : NEXT : GOTO 60

Next, we move vertically by incrementing y%, with a static x-
axis @ 100.

60	 FOR Y% = 0 TO 200 : SPRITEAT 0, 100, Y% : NEXT : GOTO 60

Stationary balloon
placed at 100, 100

X-axis movement;

Y-axis fixed @ 100

Y-axis movement;

X-axis fixed @ 100

07/2022 11

Don’t forget to
show the Sprite

BLOAD, MEMCOPY, and
memory, will be discussed

next issue

END is required here to
prevent this code from
running into line 10020

These examples are
endless loop; press
BREAK to stop them

https://lospec.com/palette-list/duel

This example increments n% applied to x-axis and y-axis, resulting in diagonal movement on a pixel by pixel basis

60	 FOR N% = 0 TO 200 : SPRITEAT 0, N%, N% : NEXT : GOTO 60

And finally, this piece of code increments y% once for every two x% increments, resulting in something closer to a
22.5’ (relative to horizontal) angle. It’s not a precise 22.5’ angle due to the fact that pixels are not perfectly square. We are
leveraging the BASIC modulus operator to test for even values, and are also using a variable called MAX% to identify the
maximum x-axis value. We will use this next time.

60	 X% = 0 : Y% = 0 : MAX% = 200
70	 SPRITEAT 0, X%, Y% : IF X% = MAX% THEN 60
80	 X% = X% + 1 : IF X% MOD 2 = 0 THEN 100
90	 GOTO 70
100	 Y% = Y% + 1 : GOTO 70

Next time …

The ’tool’ depicted in the graphic on the right (a five line
BASIC816 program) will be instrumental in our next steps with
this project.

A significant part of software development is becoming familiar
with a given “tool chain” and sometimes, you just have to create
your own tools and methods to manage and interrogate data.

We could use Gimp (GNU Image Manipulation) and a set of
Python scripts on other platforms and sneaker-net files back and
forth, but let’s stay here if we can. That’s what younger
versions of ourselves had to do.

For lightweight work, I think it’s the right answer and we will
benefit by doing more with these new platforms rather than
getting distracted by others.

The aim for this column is not only to provide insight into at least ‘one’ way to leverage Foenix features, but also to challenge
and experiment, and in-turn, share findings, code examples, and applications & amusements with the community. Many are
already doing this on the Discord hosted Foenix Channels. If you have not yet joined, you should do so via the ‘invite’ link on
pg. 2 above.

Diagonal movement;

X and Y increment identically

A more shallow 2:1 angle;

X and Y incrementing based
on an operator and a decision
statement

07/2022 12

If you find that these run
too fast for your liking,

insert a delay loop; we will
cover this next issue

Back Page - Vintage Advert Time Machine
Skyles Electric Works “1541 Flash!” - developed by Bryce Nesbitt

Many of us remember the Epyx Fastload cartridge (I still have mine). In the mid-80s, there were dozens of disk speedup
products, and in fact, an entire ecosystem built around products for and about the Commodore family of disk drives existed.

The speed of the 1541 was legendarily slow but the complexity was impressive and capabilities surprising. The 1541 (and the
2031, 4040, 8050, 8250, and later the 1551, 1571, and 3.5” 1581) was a powerful, autonomous device housing its own 6502
processor, ROM, RAM, and an operating system developed to communicate with the attached Commodore computer and in
some cases, with other drives in peer to peer fashion. They could also do this, and more recently this!

But the 1541, as shipped, was slow as molasses thanks
to a serial protocol and a hardware issue that dated
back to the 1540 drive in the VIC20 days. Some of
the speed issues were dealt with as newer Commodore
computers began adopting the older (PET IEEE)
standard; this included the higher density SFD-1001
drive (yea, I owned one of those too), or in the case of
the TED series machines, the 1551 drive.

Sometime between 1984 and 1985, I traversed the
hills of Berkeley California to visit the Berkeley
Commodore Computer club which met at the
Lawrence Hall of Science. I have no recollection of
how I learned about this particular meeting; it must
have been posted on a local BBS.

But my intention was clear; Skyles Electric Works
would be demoing and selling the 1541 Flash! product
and I had to check it out!

The ad to the right, as awesome as it is, does not
portray the full picture; 1541 Flash! was part hardware
and part embedded (ROM based) software. Unlike
other SW only solutions, this product included wiring
that ran parallel to the IEC (serial) cable offering a
parallel data path. It also included custom ROMs for
the 1541 and the C64, and SW and HW switching to
disable the product. Many of the disk speedup
products of the day got in the way of some of the copy
protection schemes, or occupied one or more ports or
addresses, otherwise needed for something else.

1541 Flash! had other features such as an embedded
DOS wedge but it was not as fast as the EPYX
product, took a bit of work to install, and was
somewhat expensive. Have a read of the doc here.

I was lucky enough to have met the developer of the product, Bryce Nesbitt, that evening. As it turned out, he was local to
me (I lived just off campus on Walnut Street and he lived about a mile away); he offered to install it for me, later giving me a
custom ROM burned with my choice of screen colors; what a guy!

Bob Skyles, the owner (a former Commodore employee) reminded me of Colonial Mustard and had a nose for solutions for
Commodore products. He began by selling ‘external’ clunky replacement keyboards for the PET but in the end, he couldn’t
keep up with software-only solutions that ended up dominating the industry; but he had a good run.

Bryce went on to work for Commodore and specifically, Amiga. You can learn a bit more about him from the Viva Amiga
documentary outtakes. He was a super sharp engineer and a genuine and generous guy. This little known product, while
niche, was an amazing technical accomplishment, nearly lost in the annals of time.

1607/2022

https://rr.pokefinder.org/rrwiki/images/9/9f/Ahoy_Issue_17_1985_May_Speeder_1541Flash_KwikLoad_FastLoad.pdf
https://www.youtube.com/watch?v=5gnMgmlKi_o
https://www.youtube.com/watch?v=zprSxCMlECA
http://www.zimmers.net/anonftp/pub/cbm/manuals/drives/1541-Flash!.txt
https://vimeo.com/272762254
https://vimeo.com/272762254

	Hello Foenix

